Confidential

e PeckShield

SMART CONTRACT AUDIT REPORT

for

Fluid Protocol

Prepared By: Xiaomi Huang

PeckShield
November 10, 2023

1/34 PeckShield Audit Report #: 2023-245

contact@peckshield.com

Confidential

Document Properties

Client Instadapp

Title Smart Contract Audit Report
Target Fluid

Version 1.0

Author Xuxian Jiang

Auditors Colin Zhong, Jinzhuo Shen, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

@ ESS et il Confidential

Version Info

Version Date Author(s) Description
1.0 November 10, 2023 | Xuxian Jiang | Final Release
1.0-rc October 30, 2023 Xuxian Jiang | Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang
+86 183 5897 7782
contact@peckshield.com

2/34 PeckShield Audit Report #: 2023-245

Confidential

Contents
1 Introduction 4
1.1 About Fluid 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 6
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Improper Public Exposure of Token-Approving Function 11
3.2 Incorrect Price Scaling in ChainlinkOraclelmpl 13
3.3 Incorrect Interest Rate Computation in LiquidityCales 14
3.4 Incorrect Rebalance Logic in VaultT1 15
3.5 Timely Interest Collection Upon Rate Module Change 17
3.6 Precision Issue in Asset Withdrawal Logic 18
3.7 Conflicted Reentrancy Protection in iTokenEIP2612Deposits 20
3.8 Incorrect Vault NFT Minting Logic in VaultT1Factory 22
3.9 Revisited Collateral Factor Calculation in VaultT1 23
3.10 Improper Position Ownership Validation in VaultT1 24
3.11 Improper Branch Debt Liquidity Update in VaultT1 26
3.12 Improved User Debt Liquidation Logic in VaultT1 27
3.13 Trust Issue of Admin Keys 30
4 Conclusion 32
References 33

3/34

PeckShield Audit Report #: 2023-245

Confidential

1 Introduction

Given the opportunity to review the design document and related smart contract source code of
the Fluid protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines

our audit results.

1.1 About Fluid

Fluid aims to culminate existing lending protocols and transform the lending and borrowing space.
It has a unique base Liquidity layer, which serves as the foundation upon which other protocols can
be built by solving liquidity fragmentation. Innovative initial protocols are built on top, including
lending market and vault. The former allows users to lend and earn while the latter innovates on the
borrowing space with distinct features, e.g., higher LTV and much lower liquidation penalty. The

basic information of the audited protocol is as follows:

Table 1.1: Basic Information of Fluid

Target | Fluid
Website | https://instadapp.io/
Type | EVM Smart Contract
Language | Solidity
Audit Method | Whitebox
Latest Audit Report | November 10, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used

in this audit. Note that the Fluid protocol assumes a trusted price oracle with timely market price

4/34 PeckShield Audit Report #: 2023-245

Confidential

feeds for supported assets and the oracle itself is not part of this audit. And the current code base
is still under active revision.

e https://github.com/Instadapp/fluidity-contracts.git (5b3bfd1)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

e https://github.com/Instadapp/fluidity-contracts.git (7a0cac2)

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification
High High

Medium

Impact

Low

Medium

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [12]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

5/34 PeckShield Audit Report #: 2023-245

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

6/34 PeckShield Audit Report #: 2023-245

Confidential

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

7/34

PeckShield Audit Report #: 2023-245

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/34

PeckShield Audit Report #: 2023-245

Confidential

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the Fiuid implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

o|jlo| P+ || O

Informational
Total 13

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions

of each of them are in Section 3.

9/34 PeckShield Audit Report #: 2023-245

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be

improved by resolving the identified issues (shown in Table 2.1), including 4 high-severity vulnerabil-

ities, 4 medium-severity vulnerabilities, and 5 low-severity vulnerabilities.

Table 2.1:

Key Fluid Audit Findings

Status

Category

PVE-001 High Public Exposure of Privileged Functions | Security Features | Resolved
in vault/admin/main

PVE-002 High Incorrect Price Scaling in ChainlinkOra- | Business Logic Resolved
clelmpl

PVE-003 Low Incorrect Interest Rate Computation in | Coding Practices | Resolved
LiquidityCalcs

PVE-004 Low Incorrect Rebalance Logic in VaultT1 Business Logic Resolved

PVE-005 Low Timely Interest Collection Upon Rate | Business Logic Resolved
Module Change

PVE-006 Low Precision Issue in Asset Withdrawal | Numeric Errors Resolved
Logic

PVE-007 | Medium | Conflicted Reentrancy Protection in iTo- | Time and State | Resolved
kenEIP2612Deposits

PVE-008 Low Incorrect Vault NFT Minting Logic in | Business Logic Resolved
VaultT1Factory

PVE-009 High Revisited Collateral Factor Calculation in | Coding Practices | Resolved
VaultT1

PVE-010 High Improper Position Ownership Validation | Business Logic Resolved
in VaultT1

PVE-011 | Medium | Improper Branch Debt Liquidity Update | Business Logic Resolved
in VaultT1

PVE-012 | Medium | Improved User Debt Liquidation Logicin | Business Logic Resolved
VaultT1

PVE-013 | Medium | Trust Issue of Admin Keys Security Features | Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is

always important to develop necessary risk-control mechanisms and make contingency plans, which

may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick

in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3

for details.

10/34

PeckShield Audit Report #: 2023-245

18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

Confidential

3 Detailed Results

3.1 Improper Public Exposure of Token-Approving Function

e |ID: PVE-001 e Target: VaultAdmin

e Severity: High e Category: Security Features [6]
e Likelihood: High e CWE subcategory: CWE-287 [3]
e Impact: Medium

Description

In the Fluid protocol, there is a VaultAdmin contract that is designed to manage the vault adminis-
tration. However, we notice a number of privileged functions are publicly exposed, which need to be
restricted to trusted callers only.

To elaborate, we show below the example admin-related functions from the vVaultAdmin contract.
By design, they are used to configure various aspects of the deployed vaults. These functions should
be restricted to trusted callers, instead of being exposed publicly.

modifier _updateExchangePrice() {
IVault (address (this)) .updateExchangePriceOnStorage () ;

-

function updateSupplyRateMagnifier (
uint16 supplyRateMagnifier_
) public _updateExchangePrice {

vaultVariables2 =
(vaultVariables2 & O
XfffFfFfFfFFFFFE££0000) |

supplyRateMagnifier_;

emit LogUpdateSupplyRateMagnifier (supplyRateMagnifier_);

function updateBorrowRateMagnifier (

11/34 PeckShield Audit Report #: 2023-245

34
35
36
37
38

39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56

57
58
59

Confidential

uintl6 borrowRateMagnifier_

) public _updateExchangePrice {

vaultVariables2 =
(vaultVariables2 & O
XffFfFffFFffFFEFFEFFFFO000LELEE) | (
borrowRateMagnifier_ << 16) ;

emit LogUpdateBorrowRateMagnifier (borrowRateMagnifier_);

function updateCollateralFactor (

uintl1l6 collateralFactor_

) public _updateExchangePrice {

vaultVariables2 =
(vaultVariables2 & O
XffLfFfFfFFFFFOO00FEfEfEEEEE) | (
collateralFactor_ << 32);

emit LogUpdateCollateralFactor(collateralFactor_);

function updatelLiquidationThreshold(
uintl6 liquidationThreshold_

) public _updateExchangePrice {

vaultVariables2 =
(vaultVariables2 & O
X fffffffffFFfffffFFffffffffffffffffffFfFFfEffFfFFFLFFfO000LLfFfFFFLELEFF) | (
liquidationThreshold_ << 48);

emit LogUpdateliquidationThreshold(liquidationThreshold_);

Listing 3.1: Example Administration Functions in vaultAdmin

Recommendation

Validate the callers to the above-mentioned functions in VaultAdmin.

Status The issue has been addressed by applying the following PR: 152.

12/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/pull/152

34
35
36
37
38
39

40
41
42
43

Confidential

3.2 Incorrect Price Scaling in ChainlinkOraclelmpl

ID: PVE-002
Severity: High
Likelihood: High

Impact: Medium

Description

e Target: ChainlinkOracleImpl
e Category: Business Logic [9]
e CWE subcategory: CWE-837 [5]

Oracles are a critical component of any lending and borrowing protocol. The vault in Fluid utilizes an

oracle system that combines Uniswap and Chainlink to ensure the most reliable and accurate pricing

data. Our analysis shows current oracle integration has an issue in computing the price with incorrect

scaling.

To elaborate, we show below the related code snippet of the getChainlinkExchangeRate() rou-

tine. As the name indicates, this routine returns the exchange rate from Chainlink oracle. However,

when CHAINLINK_INVERT_RATE is true, the inverted price should be _invertChainlinkPrice(uint256(

exchangeRate_)), NOt _invertChainlinkPrice(uint256 (exchangeRate_))* (10 ** CHAINLINK_PRICE_SCALER_DECIMALS

) (line 39). The reason is that the _invertChainlinkPrice() helper makes the internal adjustment

based on the required price scaling, without the need of external adjustment again.

function getChainlinkExchangeRate () public view returns (uint256 rate_) {
(, int256 exchangeRate_, , ,) = FEED.latestRoundData();

// Return the price in units of wei
if (CHAINLINK_INVERT_RATE) {
return _invertChainlinkPrice(uint256 (exchangeRate_)) * (10 *x*
CHAINLINK_PRICE_SCALER_DECIMALS);

} else {

return uint256 (exchangeRate_) * (10 ** CHAINLINK_PRICE_SCALER_DECIMALS);

LiSth1g 3.2: ChainlinkOracleImpl:getChainlinkExchangeRate ()

Note other two routines in univ3oraclelImpl, i.€., _getPriceFromSqrtPriceX96() and _invertUniV3Price

O, can also benefit from similar scaling adjustment.

Recommendation

correct scaling.

Improve the above-mentioned routines by returning the queried prices with

Status The issue has been addressed in the following commit: 2396cca.

13/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/2396cca

437

438

439

440

441

442

443

444

445
446
447
448
449
450
451
452
453
454
455
456

Confidential

3.3

Incorrect Interest Rate Computation in LiquidityCalcs

ID: PVE-003 e Target: LiquidityCalcs

Severity: Low e Category: Coding Practices [8]
Likelihood: Low o CWE subcategory: CWE-1126 [1]
Impact: Low

Description

In the Fluid protocol, the LiquidityCalcs contract is a library contract that consolidates liquidity-

related computation. In the process of examining current interest rate logic, we notice its implemen-

tation can be improved.

To illustrate, we show below the affected routine calcRatev2(). This routine is designed to

calculate the borrow rate based on utilization for rate data version 2 (with two kinks) in le4 precision.

However, these two kinks have 16 bits each, instead of 20 bits (lines 461-462). The incorrect kinks

may lead to wrongfully calculated borrow rate, which undermines the correctness of both lending and

borrowing functionalities.

function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (

uint256 rate_) {

/// For rate v2 (two kinks)

/// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000;
1% = 100 -> max value 65535)

/// Next 16 bits => 20- 35 => Utilization at kinkl (in 1e2: 100% = 10_000; 1%
= 100 -> max value 65535)

/// Next 16 Dbits => 36- 51 => Rate at utilization kinkl (in 1e2: 100% = 10_000
; 1% = 100 -> max value 65535)

/// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1%
= 100 -> max value 65535)

/// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000
; 1% = 100 -> max value 65535)

/// Next 16 Dbits => 84- 99 => Rate at utilizatiom 100% (in 1e2: 100% = 10_000;

1% = 100 -> max value 65535)
/// Last 156 bits => 100-255 => blank, might come in use in future

// y = mx + c.

// y is borrow rate

// x is utilization

// m = slope (m can be O but never negative)

// c is constant (c can be negative)

uint256 yi_;
uint256 y2_;
uint256 x1_;
uint256 x2_;

14/34

PeckShield Audit Report #: 2023-245

457
458
459
460

461
462
463
464
465
466
467
468
469
470
471

Confidential

// extract kinkl: 16 bits (OxFFFF) starting from bit 20

// extract kink2: 52 bits (O0xFFFF) starting from bit 20

// kink is in 1e2, same as utilization, so no conversion needed for direct
comparison of the two

uint256 kinkl_ = ((rateData_ >> 20) & OxFFFFF);

uint256 kink2_ = ((rateData_ >> 52) & OxFFFFF);

if (utilization_ < kink1l_) {

// if utilization is less than kink1

yl1_ = ((rateData_ >> 4) & X16);
y2_ = ((rateData_ >> 36) & X16);
x1_ = 0; // 0%

x2_ = kinkl_;

Listing 3.3: LiquidityCalcs: :calcRateV2()

Recommendation Revise the above calcRatev2() routine by computing the right kinks for

borrow rate calculation.

Status The issue has been addressed in the following commit: 22v0144.

3.4 Incorrect Rebalance Logic in VaultT1

e |ID: PVE-004 e Target: VaultT1

e Severity: Low e Category: Business Logic [9]

e Likelihood: High e CWE subcategory: CWE-837 [5]
e Impact: Low

Description

The vault has a built-in rebalancing logic to synchronize between the underlying liquidity and vault
balance. In the process of examining the rebalancing logic, we notice the computed rebalance amount
may have a wrong orientation.

To elaborate, we show below the code snippet from the rebalance() routine. This code snippet
basically checks the balance between liquidity and vault. When the vault has more expected balance
than liquidity, there is a need to fetch tokens from rebalancer and supply in liquidity. On the reverse
side, when the vault has less balance than liquidity, we need to withdraw from liquidity and send
to rebalancer. It comes to our attention that the liquidity withdrawal should be given the amount
of -int256 (totalSupplyLiquidity_ - totalSupplyVault_), not current int256(totalSupplylLiquidity_ -

totalSupplyVault_) (Hne 1289).

15/34 PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/22b0144

1267
1268

1269

1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

Confidential

if (totalSupplyVault_ > totalSupplyLiquidity_) {
// Fetch tokens from revenue/rebalance contract and supply in liquidity
contract
// This is the scenario when the supply rewards are going in vault. Hence
the vault total supply is increasing at a higher pace than Liquidity
contract.
// We are not transferring rewards right when we set the rewards to keep
things clean.
// Also, this can also happen in case when supply factor is greater than 1.
LIQUIDITY.operate (
ILiquidityOperateParams.OperateParams ({
token: SUPPLY_TOKEN,
supplyAmount: int256(totalSupplyVault_ - totalSupplyliquidity_),
borrowAmount: O,
withdrawTo: address (0),
borrowTo: address (0),
callbackData: abi.encode(rebalancer)
b
)
} else if (totalSupplylLiquidity_ > totalSupplyVault_) {
// Withdraw from Liquidity contract and send it to revenue contract.
// This is the scenario when the vault user’s are getting less ETH APR then
what’s going on Liquidity contract.
// When supplyFactor is less than 1.
LIQUIDITY.operate (
ILiquidityOperateParams.OperateParams ({
token: SUPPLY_TOKEN,
supplyAmount: int256(totalSupplylLiquidity_ - totalSupplyVault_),
borrowAmount: O,
withdrawTo: rebalancer,
borrowTo: address (0),
callbackData: new bytes (0)
b

Listing 3.4: vaultTi::rebalance()

Recommendation Revise the above rebalance() routine to properly withdraw liquidity. The

same issue is also applicable to transfer from the rebalance contract and payback on liquidity contract.

Status

16/34 PeckShield Audit Report #: 2023-245

187

188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203

Confidential

3.5 Timely Interest Collection Upon Rate Module Change

e |ID: PVE-005 e Target: AuthModule

e Severity: Low e Category: Business Logic [9]

e Likelihood: Low e CWE subcategory: CWE-837 [5]
e Impact: Low

Description

The F1luid protocol has an unified liquidity layer that enables the deployment of unique features on
top. The liquidity layer allows for the adjustment of borrow/supply rate models. While these rate
models are being adjusted, we notice the lack of timely refreshment on the fee or interest collection.

To elaborate, we show below an example updateRateDataVis() routine. This routine allows to
adjust the internal xinks as well as associated utilization rates, which may greatly affect the borrow
rate computation. Therefore, when they are changed, there is a need to timely refresh the fee
collection before the new rate model can be applied. Note this issue also affects other routines,
including AuthModule: :updateRateDataV2s() and iTokenAdmin::updateRewards ().

function updateRateDataVlis(RateDataViParams[] calldata tokensRateData_) external
onlyAuths {
uint256 length_ = tokensRateData_.length;
for (uint256 ij; i < length_;) {

if (tokensRateData_[i].token == address(0)) {

revert AddressZero();

rateData[tokensRateData[i].token] = _computeRateDataPackedV1 (
tokensRateData_[i]);

unchecked {
i++;
emit LogUpdateRateDataVlis(tokensRateData_);

Listh1g 3.5: AuthModule: :updateRateDataV1is ()

Recommendation Timely collect the fee or interest before the new rate model is deployed and

activated.

Status The issue has been addressed in the following commits: b9fsbbe and bd7c053.

17/34 PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/b9f8bb6
https://github.com/Instadapp/fluid-contracts/commit/bd7c053

240
241
242
243
244

245

247

248

250

251

252

253

255
256

Confidential

3.6 Precision Issue in Asset Withdrawal Logic

e |D: PVE-006 e Target: iTokenCore
e Severity: Low e Category: Numeric Errors [10]
e Likelihood: Low e CWE subcategory: CWE-190 [2]
e Impact: Low

Description

The lending market built on top of Fluid is in essence an over-collateralized lending pool that has
the lending functionality and supports a number of normal lending functionalities for supplying users,
i.e., mint()/redeem(). While reviewing the redeem logic, we notice the current implementation has a
precision issue.

To elaborate, we show below the related _executeWithdraw() routine. As the name indicates, this
routine is designed to withdraw assets by burning the owned market share. When the user indicates
the underlying asset amount (via assetsWithdrawn_), the respective sharesBurned_ is computed as
(assetsWithdravn_ * EXCHANGE_PRICES_PRECISION)/ newTokenExchangePrice_ (line 260). Unfortunately,
the current approach may unintentionally introduce a precision issue by computing the sharesBurned_
amount against the protocol. Specifically, the resulting flooring-based division introduces a precision
loss, which may be just a small number but plays a critical role when certain boundary conditions are
met — as demonstrated in the recent HundredFinance hack: https://blog.hundred.finance/15-04-23-

hundred-finance-hack-post-mortem-d895b618cf33.

function _executeWithdraw(
uint256 assets_,
address receiver_,
address owner_
) intermal virtual validAddress(receiver_) returns (uint256 assetsWithdrawn_,
uint256 sharesBurned_) {
uint256 liquidityExchangePrice_;

// withdraw from liquidity directly to _receiver. requires nonReentrant!
otherwise ERC777s could reenter
(liquidityExchangePrice_, assetsWithdrawn_) = _withdrawFromLiquidity (assets_,

receiver_);

// Check for rounding error
if (assetsWithdrawn_ == 0) {
revert iToken__RoundingError();

// update the exchange prices
uint256 newTokenExchangePrice_ = _updateRates(liquidityExchangePrice_, false);

18/34 PeckShield Audit Report #: 2023-245

258
259
260

262
263
264
265

267

269
270

Confidential

// not using previewWithdraw here because we just got newTokenExchangePrice_
// burn shares for actually withdrawn assets_ amount
sharesBurned_ = (assetsWithdrawn_ * EXCHANGE_PRICES_PRECISION) /

newTokenExchangePrice_;
// Check for rounding error
if (sharesBurned_ == 0) {
revert iToken__RoundingError();

burn(owner, sharesBurned_);

emit Withdraw(msg.sender, receiver_, owner_, assetsWithdrawn_, sharesBurned_);

Listing 3.6: iTokenCore: : _executeWithdraw()

Recommendation Properly revise the above routine to ensure the precision loss needs to be

computed in favor of the protocol, instead of the user. In particular, as a precaution, we need to

ensure that markets are never empty by minting small shares at the time of market creation so that

we can prevent the rounding error being used maliciously.

Status The issue has been addressed in the following commits: e404534, 9cb9204, dc2de35,

165870, and 4a1b390.

19/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/e404534
https://github.com/Instadapp/fluid-contracts/commit/9cb9204
https://github.com/Instadapp/fluid-contracts/commit/dc2de35
https://github.com/Instadapp/fluid-contracts/commit/16587f0
https://github.com/Instadapp/fluid-contracts/commit/4a1b390

36
37
38
39
40
41
42
43

44
45
46
47

48

49
50
51
52
53
54

451
452
453
454

Confidential

3.7 Conflicted Reentrancy Protection in iTokenEIP2612Deposits

ID: PVE-007 e Target: iTokenEIP2612Deposits
Severity: Medium e Category: Time and State [7]
Likelihood: High e CWE subcategory: CWE-362 [4]

Impact: Medium

Description

To mitigate potential reentrancy issues, the Fluid protocol makes extensive use of nonReentrant

modifier to detect and block reentrancy attempts. However, we notice the presence of potentially

in-conflict reentrancy protection, which should be accordingly improved.

To elaborate, we show below the implementation of the depositwithSignature() function. It has

a nonReentrant modifier and its function body further calls the iTokenActions::ca11() which also has

the nonReentrant modifier. As a result, the intended depositWithSignature() function for the EIP2612

support does not work as expected.

function depositWithSignature (

uint256 assets_,
address receiver_,
uint256 minAmountOut_,
uint256 deadline_,

bytes calldata signature_

) external nonReentrant returns (uint256 shares_) {

// create allowance through signature_ and spend it. ‘nonReentrant ‘¢ modifier
present so this is ok to happen

// after

(uint8 v_, bytes32 r_, bytes32 s_) = _splitSignature(signature_);

// EIP-2612 permit for underlying asset from owner (msg.sender) to spender (this
contract)
IERC20Permit (address (ASSET)) .permit (msg.sender, address(this), assets_,
deadline_, v_, r_, s_);
shares_ = deposit(assets_, receiver_);
if (shares_ < minAmountOut_) {

revert iToken__MinAmountOut () ;

Listing 3.7: iTokenEIP2612Deposits: :depositWithSignature ()

function deposit(

uint256 assets_,

address receiver_

) public virtual override nonReentrant returns (uint256 shares_) {

20/34

PeckShield Audit Report #: 2023-245

455
456
457
458
459

460
461

Confidential

if (assets_ == type(uint256).max) {
assets_ = ASSET.balanceOf (msg.sender) ;

¢ ¢

// @dev transfer of tokens from ‘msg.sender
liquidityCallback ¢

(, shares_) = _executeDeposit(assets_, receiver_, abi.encode(msg.sender));

to liquidity contract happens via

Listing 3.8: iTokenActions: :deposit()

Recommendation Remove the nonReentrant modifier from the depositWithSignature() function.

Status The issue has been addressed in the following commit: 89a6bb2.

21/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/89a6bb2

240
241

242
243

244
245
246
247

270

271
272
273
274
275
276
277
278

279
280
281
282
283
284

Confidential

3.8 Incorrect Vault NFT Minting Logic in VaultT1Factory

e |ID: PVE-008 e Target: VaultTiFactory
e Severity: Low e Category: Business Logic [9]
e Likelihood: Low e CWE subcategory: CWE-837 [5]

Impact: Low

Description

As mentioned earlier, the Fluid protocol has an unified liquidity layer that enables the deployment of
unique features on top. While examining the vault deployment via the VaultTiFactory contract, we
notice the NFT tokenization of a user position should be improved.

To elaborate, we show below the related mint () function. This routine is designed to mint a new
NFT to the given user with the associated vaultId_. However, it comes to our attention that the

internal _mint () helper was given a wrong tokenId_ as vaultId_ (line 244).

function mint(uint256 vaultId_, address user_) external returns (uint256 tokenId_) {
if (msg.sender != getVaultAddress(vaultId_)) revert VaultTiFactory__InvalidVault
O

// Using _mint () instead of _safeMint() to allow any msg.sender to receive
ERC721 without onERC721Received holder.

tokenId_ = _mint (user_, tokenId_);
emit NewPositionMinted (msg.sender, user_, tokenId_);
}
Listing 3.9: vaultTiFactory: :mint()
function _mint(address to_, uint256 vaultId_) internal virtual returns(uint256 id_)
{
if (to_ == address(0)) revert ERC721__InvalidParams();
unchecked {
totalSupply++;
}
id_ = totalSupply;
if (id_ >= type(uint32).max || _tokenConfigl[id_] != 0) revert
ERC721__InvalidParams () ;
transfer (address (0), to, id_, vaultId_);
emit Transfer (address(0), to_, id_);
}

Listing 3.10: ERC721::_ _mint()

22/34 PeckShield Audit Report #: 2023-245

335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Confidential

Recommendation Correct the above mint () function with the right vaultId_.

Status The issue has been addressed in the following commit: es6721f.

3.9 Reuvisited Collateral Factor Calculation in VaultT1

e ID: PVE-009 e Target: VaultTi
e Severity: High e Category: Coding Practices [8]
e Likelihood: Medium o CWE subcategory: CWE-1126 [1]
e Impact: High
Description

The vault support in Fluid has a unified entry function operate() to perform lending-related opera-
tions, i.e., supply, borrow, withdraw, and payback. Naturally, the vault needs to enforce an invariant,
i.e., a borrower will not be able to borrow more than allowed based on the deposited collateral and
associated collateral factor. While assessing this borrow invariant, we notice current implementation
incorrectly applies the collateral factor and thus compromise the invariant.

To elaborate, we show below the code snippet from the operate() routine. This code snippet
basically computes tickatCF based on the specified collateral factor. We notice the collateral factor is
extracted from ((o_.vaultVariables2 >> 32)& oxf£ff) (line 346), which is normalized with 4 decimals.
As a result, the correct tickatcF should be further scaled down by 10000 (line 349).

// if debt is greater than O & transaction is not just deposit, payback or deposit &
payback
if (o_.debtRaw > 0 && !(newCol_ >= 0 && newDebt_ <= 0)) {
// Oracle returns price at 100% ratio.
// converting oracle 160 bits into oracle address
// temp_ => debt price w.r.t to col in 1e1l8
temp_ = IOracle(address(uinti160(o_.vaultVariables2 >> 96))).getExchangeRate();

// Converting price in terms of raw amounts

temp_ = (temp_ * o_.supplyExPrice) / o_.borrowExPrice;
// temp2_ => ratio at CF

temp2_ = temp_ * ((o_.vaultVariables2 >> 32) & Oxffff);

// Price from oracle is in 1e18 decimals. Converting it into (1 << 96) decimals
temp2_ = (temp2_ * (1 << 96)) / 1lel8;

// temp3_ => tickAtCF_

temp3_ = TickMath.getTickAtRatio(temp2_);
if (o_.tick > temp3_) {
if (o_.01dTick > o_.tick || (o_.debtRaw - o_.dustDebtRaw) > o_.oldNetDebtRaw
) {

23/34 PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/e8672ff

355

356

357

358
359
360
361

84
85
86
87
88
89
90
91
92

Confidential

// Above CF, user should only be allowed to reduce ratio either by

paying debt or by depositing more collateral

// Not comparing collateral as user can potentially use safe/deleverage

to reduce tick & debt.

// 0On use of safe/deleverage,

collateral will decrease but debt will

decrease as well making the overall position safer.

revert VaultT1__PositionAboveCF();

Listing 3.11: vaultTi::operate()

Recommendation Revise the above operate () routine to properly enforce the borrow invariant.

Status The issue has been addressed by applying the following PR: 149.

3.10 Improper Position Ownership Validation in VaultT1
e ID: PVE-010 e Target: VaultT1
e Severity: High e Category: Business Logic [9]
e Likelihood: High e CWE subcategory: CWE-837 [5]
e Impact: Medium

Description

As mentioned in Section 3.10, the vault has a unified entry function operate() to perform lending-

related operations, i.e., supply, borrow, withdraw, and payback. Also, each vault position is tokenized

as an NFT. While examining the borrow-related functionality, we notice the enforcement to validate

the caller (i.e., it is initiated by the owner) is incorrectly implemented.

To elaborate, we show below the code snippet from the operate() routine. This code snippet

basically validates the caller to be the NFT owner if the operation involves more than deposit and

payback (lines 95 —99). However, the if-condition should be if !(newCol_ >= 0 && newDebt_ <= 0),

not current if (newCol_ >= 0 && newDebt_ <= 0) (Hne 99).

{
// Fetching user’s position
if (nftId_ == 0) {
// creating new position.

o_.tick = type(int) .min;

// minting new NFT vault for user.

nftId_ =
} else {

// Updating existing position

VAULT_FACTORY .mint (VAULT_ID, msg.sender);

24/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/pull/149

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Confidential

// not checking owner in case of just deposit & payback

if (newCol_ >= 0 && newDebt_ <= 0) {
if (VAULT_FACTORY.ownerOf (nftId_) !
revert VaultT1__NotAnOwner ();

= msg.sender) {

}
}
// temp_ => user’s position data
temp_ = positionDatal[nftId_];
if (temp_ == 0) {
revert VaultT1__InvalidOperateAmount () ;
}
temp2_ = (temp_ >> 45) & X64;

// Converting big number into normal number

o_.colRaw = (temp2_ >> 8) << (temp2_ &

oxff);

// Converting big number into normal number

temp2_ = (temp_ >> 109) & X64;

o_.dustDebtRaw = (temp2_ >> 8) << (temp2_ & Oxff);

// 1 is supply & O is borrow
if (temp_ & 1 == 1) {

// only supply position (has no debt)

o_.tick = type(int) .min;
} else {
// borrow position (has collateral
o_.tick = temp_ & 2 ==
? int ((temp_ >> 2) & Ox7ffff)
-int ((temp_ >> 2) & Ox7ffff);

& debt)

o_.tickId = (temp_ >> 21) & Oxffffff;

Listing 3.12: vaultTi::operate()

Recommendation Revise the above operate() routine to properly validate the NFT owner if the

operation involves more than deposit and payback.

Status The issue has been addressed in the following commit: fdc3£77.

25/34

PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/fdc3f77

137

138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154

155

Confidential

3.11 Improper Branch Debt Liquidity Update in VaultT1

e |D: PVE-011 e Target: VaultT1

e Severity: Medium e Category: Business Logic [9]

e Likelihood: Medium e CWE subcategory: CWE-837 [5]
e Impact: Medium

Description

The vault in Fluid innovatively allocates a user's position to a specific tick (determined by their
debt-to-collateral ratio). When a user changes its position, there is a need to adjust its allocation
accordingly. Our analysis shows the position allocation incorrectly updates the associated branch
data.

To elaborate, we show below the related code snippet from the operate() routine. This code
snippet kicks in when the user position is partially liquidated and there is a need to recompute the
latest user position (line 147). Since the user position is being adjusted, we need to withdraw the
liquidity from the final branch being liquidated where the position exists and later add the liquidity
to the new position (or tick). However, the liquidity removal from the previous branch reduces the
branch liquidity (line 155) and the reduction is incorrectly reflected in the branchpata (line 157) with a
wrong mask OxffffffffffffffffEfEFE£E£E££000000000000000000000000££££££££££££E, which should be
OxffffffffffEEFEEEELEEfEfE£E£ELELEE££0000000000000000f fEFEFEFEFFEE.

// Checking if tick is liquidated OR if the total IDs of tick is greater than
user’s tick ID
if (((temp_ & 1) == 1) || (((temp_ >> 1) & Oxffffff) > o_.tickId)) {
// User got liquidated
(
// returns the position of the user if the user got liquidated then it
returns the new position of user.
o_.tick,
o_.debtRaw,
o_.colRaw,
temp2_, // final branch from liquidation where position exist right now
o_.branchData
) = fetchLatestPosition(o_.tick, o_.tickId, o_.debtRaw, temp_);

if (o_.debtRaw > o_.dustDebtRaw) {
// temp_ => branch’s Debt
temp_ = (o_.branchData >> 52) & X64;
temp_ = (temp_ >> 8) << (temp_ & Oxff);

// TODO: Make sure to check that debtToRemove_ should always be < branch
’s Debt (temp_). Else function will fail
temp_ -= o_.debtRaw;

26/34 PeckShield Audit Report #: 2023-245

Confidential

156 temp_ = temp_.toBigNumberPure (56, 8);
157 branchData[temp2_] =
158 (o_.branchData & 0O

xfffffffffffffLffFfFEfE££££F£££000000000000000000000000ffffffffffff
) |

159 (temp_ << 52);

160

161 // Converted positionRawDebt_ in net position debt
162 o_.debtRaw -= o_.dustDebtRaw;
163 } else {

164 // Liquidated 100Y%

165 o_.debtRaw = 0;

166 o_.colRaw = 0;

167 }

168 o_.dustDebtRaw = 0;

169 }

Listing 3.13: VaultTi::operate()

Recommendation Revise the above operate() routine to properly removal liquidity from the
affected branch.

Status The issue has been addressed in the following commit: £dc3£77.

3.12 Improved User Debt Liquidation Logic in VaultT1

e |ID: PVE-012 e Target: VaultTi

e Severity: Medium e Category: Business Logic [9]

e Likelihood: Medium e CWE subcategory: CWE-837 [5]
e Impact: Medium

Description

The vault innovates the borrowing space with a borrower-friendly liquidation mechanism. Specifically,
any trader of any size can liquidate any amount of debt and there is no requirement to liquidate the
entire bad debt at once. While examining the liquidation-related functionality, we notice there are a
number of revisions that can be done to improve current implementation.

The first issue is related to the minimaTick extraction from the current branch being liquidated
(line 544 — 546). The extraction is based on the ternary operator that makes use of an uninitialized

temp_, hence yielding always negative minimaTick.

530 {
531 [/ ############# Setting current branch in memory ####HH####H##HLY
532

27/34 PeckShield Audit Report #: 2023-245

https://github.com/Instadapp/fluid-contracts/commit/fdc3f77

533
534
535
536
537
538

539
540
541
542
543
544
545
546
547
548
549
550

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655

Confidential

// Updating branch related data

branch_.id = (vaultVariables_ >> 22) & Ox3fffffff;

branch_.data = branchData[branch_.id];

branch_.debtFactor = (branch_.data >> 116) & X50;

if (branch_.debtFactor == 0) {
// Initializing branch debt factor. 35 | 15 bit number. Where full 35

bits and 15th bit is occupied.

// Making the total number as (2**35 - 1) << 2**14.
branch_.debtFactor = ((Ox7ffffffff << 15) | (1 << 14));

}
// If branch is liquidated then only it’1l have minima tick
if ((vaultVariables_ & 2) == 2) {

branch_.minimaTick = (temp_ & 4) == 4

? int256 ((branch_.data >> 3) & Ox7ffff)
-int256 ((branch_.data >> 3) & Ox7ffff);

} else {

branch_.minimaTick = type(int) .min;
}

Listing 3.14: vaultTi::liquidate()

The second issue involves the tickHasDebt_.nextTick assignment when the top tick is not liqui-

dated (lines 646 — 650). Specifically, when current tick in liquidation is a perfect tick, the same tick

is used to fetch next perfect tick as tickHasDebt_.nextTick = currentData_.tick, NOt tickHasDebt_.

nextTick == currentData_.tick (Hne 650).

if (currentData_.debtRemaining > 0) {

// Stores liquidated debt & collateral in each loop
uint debtLiquidated_;
uint colLiquidated_;

uint debtFactor_ = 1el8;

TickHasDebt memory tickHasDebt_;
tickHasDebt_.mapId = (currentData_.tick < 0)
? (((currentData_.tick + 1) / 256) - 1)

(currentData_.tick / 256);

tickInfo_.ratio = TickMath.getRatioAtTick(int24(tickInfo_.tick));

if (currentData_.tickStatus == 1) {
// top tick is not liquidated. Hence it’s a perfect tick.
currentData_.ratio = tickInfo_.ratio;
// if current tick in liquidation is a perfect tick then fetching this

will allow to fetch next perfect tick

tickHasDebt_.nextTick == currentData_.tick;

} else {
// top tick is liquidated. Hence it’s has partials.
tickInfo_.ratioOnelLess = (tickInfo_.pratio * 10000) / 10015;
tickInfo_.length = tickInfo_.ratio - tickInfo_.ratioOneLess;
tickInfo_.partials = (branch_.data >> 22) & X30;

28/34

PeckShield Audit Report #: 2023-245

Confidential

656 currentData_.ratio = tickInfo_.ratioOnelLess + ((tickInfo_.length *
tickInfo_.partials) / X30);

657 }

658

659 }

Listing 3.15: vaultTi::liquidate(

The third issue is about the branch data update with a wrong connect factor offset. It occurs
when the debt is being liquidated so that the associated branch will be adjusted for respective liquidity
removal. In particular, the correct connect factor offset should be 116, not current 112 (line 890).

876 {

877 uint newBranchDebtFactor_ = (temp2_ >> 116) & X50;

878

879 // connectionFactor_ = baseBranchDebtFactor / currentBranchDebtFactor

880 uint connectionFactor_ = BigMath.divBigNumber (

881 newBranchDebtFactor_,

882 branch_.debtFactor,

883 35,

884 15,

885 96, // precision

886 16384 // decimals

887) 8

888

889 // Updating current branch in storage

890 branchData[branch_.id] = (((branch_.data >> 166) << 166) | (connectionFactor_ <<
112) | 2);

891

892 // Storing base branch in memory

893 // Updating branch ID to base branch ID

894 branch_.id = temp_;

895 // Updating branch data with base branch data

896 branch_.data = temp2_;

897 // Remove next branch connection from base branch

898 branch_.debtFactor = newBranchDebtFactor_;

899 // minima tick of base branch

900 branch_.minimaTick = (temp2_ & 4) == 4

901 ? int256 ((temp2_ >> 3) & Ox7ffff)

902 . -int256 ((temp2_ >> 3) & OXTffff);

903 }

Listing 3.16: vaultTi::liquidate()

Recommendation Resolve the above-mentioned issues in the debt liquidation logic.

Status The issue has been addressed by following the above suggestion.

29/34 PeckShield Audit Report #: 2023-245

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

Confidential

3.13 Trust Issue of Admin Keys

ID: PVE-013
Severity: Medium
Likelihood: Medium

Impact: Medium

Description

e Target: Multiple Contracts
e Category: Security Features [6]
e CWE subcategory: CWE-287 [3]

In the F1uid protocol, there are a series of privileged accounts that play a critical role in governing and

regulating the protocol-wide operations (e.g., configure various system parameters and update price

oracle). In the following, we show the representative functions potentially affecte e privilege
le). In the foll g how the rep tative funct potentially affected by the privileg

of the accounts.

function updateAuths (AddressBool[]

uint256 length_ = authsStatus_.length;

for (uint256 i; i < length_;) {
if (authsStatus_[i].addr ==
revert AddressZero();

calldata authsStatus_) external onlyGovernance {

address (0)) {

uint256 setStatus_ = authsStatus_[i].value ? 1 : 0;

isAuth[authsStatus[i].addr] =

unchecked {

i++;

emit LogUpdateAuths (authsStatus_);

/// @inheritdoc

function updateGuardians (AddressBool[]

ILiquidityAdmin

onlyGovernance {

setStatus_;

calldata guardiansStatus_) external

uint256 length_ = guardiansStatus_.length;

for (uint256 i; i < lemngth_;) {
if (guardiansStatus_[i].addr ==

revert AddressZero();

address (0)) {

uint256 setStatus_ = guardiansStatus_[i].value 7 1 : 0;

isGuardian[guardiansStatus[i].addr] =

unchecked {

i++;

setStatus_;

30/34

PeckShield Audit Report #: 2023-245

59
60
61
62
63

Confidential

emit LogUpdateGuardians (guardiansStatus_);

Listing 3.17: Example Privileged Operations in GovernanceModule

We emphasize that the privilege assignment is indeed necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is a plain EOA account. The multi-sig
mechanism could greatly alleviate this concern, though it is still far from perfect. Note that a
compromised privileged account would allow the attacker to modify a number of sensitive system

parameters, which directly undermines the assumption of the protocol design.

Recommendation Suggest to introduce the multi-sig mechanism to manage all the privileged
accounts to mitigate this issue. Additionally, all changes to privileged operations may need to be
mediated with necessary timelocks. Note the same issue is also applicable to the proxy upgrade as

the current protocol is deployed behind a proxy.

Status The issue has been confirmed by the team. The teams intends to make use of multi-sig

to mitigate this issue.

31/34 PeckShield Audit Report #: 2023-245

Confidential

4 Conclusion

In this audit, we have analyzed the design and implementation of the Fluid protocol, which aims to
culminate existing lending protocols and transform the lending and borrowing space. It has a unique
base Liquidity layer, which serves as the foundation upon which other protocols can be built by
solving liquidity fragmentation. Innovative initial protocols are built on top, including lending market
and vault. The former allows users to lend and earn while the latter innovates on the borrowing space
with distinct features, e.g., higher LTV and lowest liquidation penalty. The current code base is well
structured and neatly organized. Those identified issues are promptly confirmed and addressed.
Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or

suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

32/34 PeckShield Audit Report #: 2023-245

Confidential

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/
190.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

('Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/
data/definitions/837.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254 .html.

[7] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/
361.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/
840.html.

33/34 PeckShield Audit Report #: 2023-245

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Confidential

[10] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[11] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[12] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk

Rating Methodology.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

34/34 PeckShield Audit Report #: 2023-245

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Fluid
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Public Exposure of Token-Approving Function
	Incorrect Price Scaling in ChainlinkOracleImpl
	Incorrect Interest Rate Computation in LiquidityCalcs
	Incorrect Rebalance Logic in VaultT1
	Timely Interest Collection Upon Rate Module Change
	Precision Issue in Asset Withdrawal Logic
	Conflicted Reentrancy Protection in iTokenEIP2612Deposits
	Incorrect Vault NFT Minting Logic in VaultT1Factory
	Revisited Collateral Factor Calculation in VaultT1
	Improper Position Ownership Validation in VaultT1
	Improper Branch Debt Liquidity Update in VaultT1
	Improved User Debt Liquidation Logic in VaultT1
	Trust Issue of Admin Keys

	Conclusion
	References

