
INSTADAPP
FLUID

SECURITY
AUDIT

REPORT

Jun 25, 2024



TABLE OF CONTENTS

2

2

2

6

7

10

11

13

13

13

13

13

15

17

17

18

19

20

21

1. INTRODUCTION

1.1 Disclaimer

1.2 Security Assessment Methodology

1.3 Project Overview

1.4 Project Dashboard

1.5 Summary of findings

1.6 Conclusion

2.FINDINGS REPORT

2.1 Critical

2.2 High

2.3 Medium

M-1 Lack of supply limit

M-2 Insufficient reentrancy protection in FluidVaultT1

2.4 Low

L-1 FluidVaultT1.liquidate() reverts if actualColAmt_ is zero

L-2 Fee-on-transfer and rebasable tokens are not supported

L-3 Cross-vault borrowing may cause liquidations to fail

L-4 Risk of revert in rate calculation

3. ABOUT MIXBYTES

1



1. INTRODUCTION

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the

business model, investment advice, endorsement of the platform or its products, regulatory regime for the

business model, or any other statements about fitness of the contracts to purpose, or their bug free status.

The audit documentation is for discussion purposes only. The information presented in this report is

confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy,

disclose or disseminate without the agreement of the Client. If you are not the intended recipient(s) of this

document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on the audit. The security engineers check the provided source

code independently of each other in accordance with the methodology described below:

1. Project architecture review:

Stage goals

2. Checking the code in accordance with the vulnerabilities checklist:

Project documentation review.•

General code review.•

Reverse research and study of the project architecture on the source code alone.•

Build an independent view of the project's architecture.•

Identifying logical flaws.•

Manual code check for vulnerabilities listed on the Contractor's internal checklist. The Contractor's

checklist is constantly updated based on the analysis of hacks, research, and audit of the clients' codes.

•

Code check with the use of static analyzers (i.e Slither, Mythril, etc).•

2



Stage goal

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flash loan attacks etc.).

3. Checking the code for compliance with the desired security model:

Stage goal

Detect inconsistencies with the desired model.

4. Consolidation of the auditors' interim reports into one:

Stage goals

5. Bug fixing & re-audit:

Detailed study of the project documentation.•

Examination of contracts tests.•

Examination of comments in code.•

Comparison of the desired model obtained during the study with the reversed view obtained during the

blind audit.

•

Exploits PoC development with the use of such programs as Brownie and Hardhat.•

Cross check: each auditor reviews the reports of the others.•

Discussion of the issues found by the auditors.•

Issuance of an interim audit report.•

Double-check all the found issues to make sure they are relevant and the determined threat level is correct.•

Provide the Client with an interim report.•

The Client either fixes the issues or provides comments on the issues found by the auditors. Feedback

from the Customer must be received on every issue/bug so that the Contractor can assign them a status

(either "fixed" or "acknowledged").

•

Upon completion of the bug fixing, the auditors double-check each fix and assign it a specific status,

providing a proof link to the fix.

•

A re-audited report is issued.•

3



Stage goals

6. Final code verification and issuance of a public audit report:

Stage goals

Verify the fixed code version with all the recommendations and its statuses.•

Provide the Client with a re-audited report.•

The Customer deploys the re-audited source code on the mainnet.•

The Contractor verifies the deployed code with the re-audited version and checks them for compliance.•

If the versions of the code match, the Contractor issues a public audit report.•

Conduct the final check of the code deployed on the mainnet.•

Provide the Customer with a public audit report.•

4



Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the

following classification:

Severity Description

Critical Bugs leading to assets theft, fund access locking, or any other loss of funds.

High Bugs that can trigger a contract failure. Further recovery is possible only by
manual modification of the contract state or replacement.

Medium Bugs that can break the intended contract logic or expose it to DoS attacks, but do
not cause direct loss funds.

Low Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the

Contractor, they are assigned the following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no longer affect its
security.

Acknowledged The Customer is aware of the finding. Recommendations for the finding are
planned to be resolved in the future.

5



1.3 Project Overview

VaultT1 is a core component of the Fluid architecture, operating as a borrow/lending protocol. It enables

users to establish collateral/borrow positions, with all funds managed via interactions with the central

Liquidity contract. Each position is represented by an NFT minted through the VaultFactory. The

deployment of VaultT1 involves linking it with the VaultT1 AdminModule and FluidVaultT1Secondary

contracts. Furthermore, VaultT1 is connected to an oracle that assesses the value of collateral and debt,

ensuring accurate calculations and risk management.

6



1.4 Project Dashboard

Project Summary

Title Description

Client Instadapp

Project name Fluid

Timeline March 25 2024 - June 21 2024

Number of Auditors 4

Project Log

Date Commit Hash Note

25.03.2024 75784793203c4be2cfa5476953ba0a7905ee79e1 Commit for the audit

25.04.2024 d3d9fd9e5d8a5bd1841dac600c92c00db8267775 Commit for the reaudit

14.05.2024 c4b49eb902eee75810b16e83aa9cf50cc357f86e Commit with updates

17.06.2024 b466ffd4b69761be50851094ff624edaf1fa6c07 Commit with updates

Project Scope

The audit covered the following files:

File name Link

contracts/protocols/vault/vaultT1/adminModule/events.sol events.sol

contracts/protocols/vault/vaultT1/adminModule/main.sol main.sol

7

https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/adminModule/events.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/adminModule/main.sol


File name Link

contracts/protocols/vault/vaultT1/common/variables.sol variables.sol

contracts/protocols/vault/vaultT1/coreModule/constantVariables.sol constantVariables.sol

contracts/protocols/vault/vaultT1/coreModule/events.sol events.sol

contracts/protocols/vault/vaultT1/coreModule/helpers.sol helpers.sol

contracts/protocols/vault/vaultT1/coreModule/main2.sol main2.sol

contracts/protocols/vault/vaultT1/coreModule/main.sol main.sol

contracts/protocols/vault/vaultT1/coreModule/structs.sol structs.sol

(review) contracts/libraries/bigMathMinified.sol bigMathMinified.sol

(review) contracts/libraries/bigMathVault.sol bigMathVault.sol

(review) contracts/libraries/liquidityCalcs.sol liquidityCalcs.sol

(review) contracts/libraries/liquiditySlotsLink.sol liquiditySlotsLink.sol

(review) contracts/libraries/storageRead.sol storageRead.sol

(review) contracts/libraries/tickMath.sol tickMath.sol

Deployments

File name Contract deployed on mainnet Comment

main.sol 0x0C8C77...E3DD6cB3 Vault_ETH_USDC

main.sol 0xE16A6f...E00B00eB Vault_ETH_USDT

main.sol 0x82B27f...aA2548De Vault_wstETH_ETH

8

https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/common/variables.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/constantVariables.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/events.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/helpers.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main2.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/structs.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/bigMathMinified.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/bigMathVault.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/liquidityCalcs.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/liquiditySlotsLink.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/storageRead.sol
https://github.com/Instadapp/fluid-contracts/tree/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/tickMath.sol
https://etherscan.io/address/0x0C8C77B7FF4c2aF7F6CEBbe67350A490E3DD6cB3
https://etherscan.io/address/0xE16A6f5359ABB1f61cE71e25dD0932e3E00B00eB
https://etherscan.io/address/0x82B27fA821419F5689381b565a8B0786aA2548De


File name Contract deployed on mainnet Comment

main.sol 0x1982CC...B28fdcc3 Vault_wstETH_USDC

main.sol 0xb4F3bf...E95Cc946 Vault_wstETH_USDT

main.sol 0xeAEf56...C35e028D Vault_weETH_wstETH

main.sol 0x399646...2c8744Dd Vault_sUSDe_USDC

main.sol 0xBc3452...3BA38Da5 Vault_sUSDe_USDT

main.sol 0xF2c8F5...552d0FA4 Vault_weETH_USDC

main.sol 0x92643E...acA6D5F1 Vault_weETH_USDT

9

https://etherscan.io/address/0x1982CC7b1570C2503282d0A0B41F69b3B28fdcc3
https://etherscan.io/address/0xb4F3bf2d96139563777C0231899cE06EE95Cc946
https://etherscan.io/address/0xeAEf563015634a9d0EE6CF1357A3b205C35e028D
https://etherscan.io/address/0x3996464c0fCCa8183e13ea5E5e74375e2c8744Dd
https://etherscan.io/address/0xBc345229C1b52e4c30530C614BB487323BA38Da5
https://etherscan.io/address/0xF2c8F54447cbd591C396b0Dd7ac15FAF552d0FA4
https://etherscan.io/address/0x92643E964CA4b2c165a95CA919b0A819acA6D5F1


1.5 Summary of findings

Severity # of Findings

Critical 0

High 0

Medium 2

Low 4

ID Name Severity Status

M-1 Lack of supply limit Medium Acknowledged

M-2 Insufficient reentrancy protection in FluidVaultT1 Medium Fixed

L-1 FluidVaultT1.liquidate() reverts if
actualColAmt_ is zero

Low Fixed

L-2 Fee-on-transfer and rebasable tokens are not
supported

Low Acknowledged

L-3 Cross-vault borrowing may cause liquidations to fail Low Acknowledged

L-4 Risk of revert in rate calculation Low Acknowledged

10



1.6 Conclusion

The Vault protocol by Fluid is a lending protocol that achieves high capital efficiency due to a highly

efficient liquidation algorithm, which operates with ticks and branches.

This audit focused on the protocol's general architecture, interactions across vaults, big number math, tick

math, user operations, and the liquidation algorithm. Special attention was given to handling edge cases

during liquidations, position creation, and managing overflows and underflows when working with packed

storage variables.

Key activities included:

1. Confirming the reduction of a position's Health Factor over time.

2. Conducting experiments with rounding errors in large numbers to ensure they do not lead to DOS

or excessive accumulation of bad debt.

3. Testing the possibility of overflow in individual packed variables to alter subsequent variables in

the slot.

4. Checking edge cases with ticks to ensure the correct handling of zero ticks and determining the

minimum and maximum ticks a user's position can have.

5. Ensuring that the absorb() and liquidate() functions do not overlap in ticks.

6. Confirming that the health index of a user's position improves after partial liquidation, and that re-

liquidation of the position is possible when the price falls further.

7. Confirming that interest accumulates on the branch and can be properly liquidated.

8. Fuzzing the creation of multiple branches and verifying that users can properly close their

positions after liquidations, ensuring that the algorithm does not accumulate unaccounted debt,

and confirming that debt accrues to the user and can be correctly liquidated.

Key Observations and Recommendations:

A thorough review against a detailed checklist revealed no dangerous vulnerabilities. The checklist covered

aspects such as proxy and delegatecall risks, access control, calculation flaws, gas issues, assembly

pitfalls and potential compiler bugs.

General Architecture and Cross-Vault Interactions: The Vault lacks a supply cap, potentially rendering the

liquidation unprofitable.

•

Reentrancy Concerns: Cross-contract reentrancy is possible due to the violation of the check-effect-

interaction pattern in Vault functions. Neither read-only functions nor the admin module have reentrancy

protections. Strengthening these areas is crucial to safeguard certain types of DAO proposals and

potential external integrations.

•

Error Handling in Core Functions: The functions absorb(), liquidate(), and operate() in

FluidVaultT1 sometimes revert without clear error messages, complicating troubleshooting and user

interaction. Enhancing error messaging will improve usability and facilitate debugging.

•

11



The protocol demonstrates a high degree of security. However, the code's optimization for maximum gas

efficiency has necessitated sacrifices in clarity, significantly complicating the audit process. Developers

should weigh optimization against maintainability and clarity to ease future audits and maintenance.

12



2.FINDINGS REPORT

2.1 Critical

Not Found

2.2 High

Not Found

2.3 Medium

M-1 Lack of supply limit

Severity Medium

Status Acknowledged

Description

To profit from liquidations, liquidators must be able to sell collateral at a favorable price. However, selling a

large amount of collateral may significantly impact the selling price, rendering liquidation unprofitable and

generating bad debt.

A supply limit, configured to match market liquidity, could mitigate this issue. However, the supply limit has

not been implemented yet. Although, the borrow limit is in place and may indirectly limit supply, it may not

effectively address this issue due to substantial price fluctuations often associated with large volumes of

liquidations.

Recommendation

We recommend implementing a supply limit and tracking its value as per market conditions.

Client's commentary

13



Interesting, we thought on this when designing the collateral, we believe with debt ceiling, supply will

auto limit itself according to the max borrow limit. Adding supply limit adds another kind of risk for

user which is when collateral price goes down user cannot add more collateral to make their position

safer. Note: We will explore adding supply limit on liquidity layer. Liquidity layer is upgradable contract

so it can be added any time in future if needed.

14



M-2 Insufficient reentrancy protection in FluidVaultT1

Severity Medium

Status Fixed in c7f553b0

Description

Although the FluidVaultT1 smart contract code includes reentrancy protection, some functions remain

unprotected:

Admin functions

Admin functions can be called by the DAO. Once the DAO proposal is approved, it can be executed by

anyone.

Here is a possible attack vector:

The issue is that operate() works with a copy of Variables.vaultVariables:

and stores them back at the end of the function:

Thus, any modifications to vaultVariables in absorbDustDebt() will be overwritten by the later

update in operate(), as the copied memory value vaultVariables_ in operate() will remain

unchanged after the update in absorbDustDebt().

Read-only functions

The same vector applies here, but it affects the reading of certain variables like positionData and

branchData, which undergo some modifications before the call to the malicious address. Vulnerabilities

admin functions•

read-only functions•

An attacker calls operate().•

The attacker receives a call to their malicious smart contract from FluidVaultT1 while operate() is not

finalized.

•

The attacker's contract calls DAO.executeProposal() with, for example, an absorbDustDebt()

call.

•

The attacker allows the initial operate() to finish.•

main.sol#L53•

main.sol#L553.•

15

https://github.com/Instadapp/fluid-contracts/commit/c7f553b0e8e062aaf028bd3ce509842ba9bdfb3a
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L53
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L553C13-L557


in this area typically appear in more complex smart contract integrations, for instance, when external

protocols use read-only functions to integrate with Fluid. See an example at https://rekt.news/midas-

capital-rekt/.

Reentrancy spots

The safeTransfer library only requires success on msg.value transfer without gas limitations. As a

result, it is possible to receive a call to a malicious smart contract in the line:

This function is used in the following lines:

Additionally, tokens with hooks (like ERC-777) can open up new spots for reentrancy during fund transfers

from a user.

Recommendation

We recommend:

A perfect solution would be to have reentrancy protection at a higher Fluid level — on the Liquidity smart

contract. This would also protect against cross-vault and cross-protocol reentrancies.

Client's commentary

Make sense! Added the re-entrancy check here: PR-343

safeTransfer.sol#L88.•

main.sol#L515•

main.sol#L1122•

main.sol#L533-L540.•

developing a dedicated function to verify the current reentrancy status, replacing repeated lines

preceding key functions;

•

implementing this function across all functions, including admin and read-only functions (e.g.,

fetchLatestPosition), provided it does not disrupt the contract's logic.

•

16

https://rekt.news/midas-capital-rekt/
https://github.com/Instadapp/fluid-contracts/pull/343/commits/c7f553b0e8e062aaf028bd3ce509842ba9bdfb3a
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/libraries/safeTransfer.sol#L88
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L515
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L1122
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L533-L540


2.4 Low

L-1 FluidVaultT1.liquidate() reverts if actualColAmt_ is zero

Severity Low

Status Fixed in 10fbd201

Description

If there are no ticks available for liquidation in the vault, FluidVaultT1.liquidate() reverts due to

division by zero, which is not the expected behavior of the function.

Recommendation

For better clarity in such cases, we recommend returning a custom error (e.g., «VaultT1__NoDebt»).

Client's Commentary

Make sense! A better clarity revert would be good. Applied it here: PR-343

main.sol#L1106•

17

https://github.com/Instadapp/fluid-contracts/commit/10fbd201260208d95a891c5d8ee58df7aaed79e1
https://github.com/Instadapp/fluid-contracts/pull/343/commits/10fbd201260208d95a891c5d8ee58df7aaed79e1
https://github.com/Instadapp/fluid-contracts/blob/75784793203c4be2cfa5476953ba0a7905ee79e1/contracts/protocols/vault/vaultT1/coreModule/main.sol#L1106


L-2 Fee-on-transfer and rebasable tokens are not supported

Severity Low

Status Acknowledged

Description

The vault does not support fee-on-transfer and rebasable tokens. It means that vaults with such tokens can

be created, but they may operate incorrectly.

Recommendation

Ensure that such tokens are not permitted or implement code to address special cases of these tokens.

Client's Commentary

This is known and codebase should not use these kind of tokens. This responsibility is of governance.

18



L-3 Cross-vault borrowing may cause liquidations to fail

Severity Low

Status Acknowledged

Description

Multiple vaults can be created sharing the same Liquidity contract and storing funds there. Each vault

operates as an isolated lending entity with a chosen pair of BORROW_TOKEN and SUPPLY_TOKEN.

As a result, it is possible to have two vaults where, for example, ETH is supplied in the first vault and

borrowed in the second vault. If enough ETH is borrowed in the second vault, the first vault may be left with

insufficient collateral, which is critical for executing liquidations.

Recommendation

This design is likely intentional to ensure capital efficiency.

The simplest solution is to consider current borrow limits with this risk in mind. A more complex solution

could involve introducing some reserved amounts that are guaranteed to be present on the Liquidity smart

contract.

Client's Commentary

The similar risk exists in almost all other lending protocols. The goal is to keep a rate curve such that

when utilization is crossing certain kink the borrow rate should spike heavily which will force

borrowers to payback their debt.

19



L-4 Risk of revert in rate calculation

Severity Low

Status Acknowledged

Description

In liquidityCalcs.calcRateV1(), it is required that the slope is non-negative:

if (slope_ < 0) { 

  revert FluidLiquidityCalcsError( 

      ErrorTypes.LiquidityCalcs__BorrowRateNegative); 

} 

If the protocol transitions to a state with a negative slope, then the calcRateV1() function and,

consequently, the userModule function operate() that uses it will revert. This will temporarily prevent

users from repaying debts, potentially leading to liquidation risks.

Recommendation

We recommend capping the slope to zero value instead of reverting.

liquidityCalcs.sol#L566-L568•

20

https://github.com/Instadapp/fluid-contracts/blob/b466ffd4b69761be50851094ff624edaf1fa6c07/contracts/libraries/liquidityCalcs.sol#L566-L568


3. ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We

build opensource solutions, smart contracts and blockchain protocols, perform security audits, work on

benchmarking and software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://twitter.com/mixbytes

21

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://twitter.com/mixbytes

