
0

Fluid

30-10-2023 - 29-12-2023

1

Table of contents

1. Project Brief 5

2. Finding Severity breakdown 8

3. Summary of findings 9

4. Conclusion 9

5. Findings report 10

The rate from LendingRewardRateModel is returned with the incorrect number of decimals 10

BigMathVault library contains math error that causes debtFactor to be calculated completely wrong 11

Storing invalid debt factor value in tick 13

Critical

Incorrect supplyExchangePrice calculation 15

Incorrect extract of inFrom_ address 16

Impossible to change the borrowing mode of a user in the Liquidity Layer 17

DOS of iTokens markets 18

Wrong slippage checks 19

Possible reward overpayment 20

Possible bad debt in StETHQueue 21

Incorrect work of UniV3CheckFallbackCLRSOracle in the first mode 21

High

Rounding errors in calcTokenData 22

Incorrect exchange prices extraction 23

Excessive expandPercent leads to underflow in withdrawal limit 24

Medium

2

Sanity checks for utilization 25

Unsustainable economy of iToken 25

Mixed compound rewards of iToken 26

Unclear shares_ amount in redeemWithSignature method 27

DOS via reward model 28

Incorrect MAX_RATE in the rewards model 29

Tick IDs overflowing 29

Wrong debt calculation of liquidated positions 30

Logical error in StETHQueue.queue leading to revert 31

Incorrect rounding in StETHQueue.claim 31

Stale data in chainlink oracles 32

DoS of uniV3OracleImpl 33

Medium

Proxy redundant functional 33

Optimization of unstructured storage 34

Redundant memory variable 34

Non-optimal if condition 34

Incorrect set of WithdrawalLimit 35

Unused BigMath functions 36

Little gas optimizations 36

Storage update of exchange prices 37

Double calculations 37

Potential Misconfiguration of RateData 38

Typos in comments 38

Possible DOS with rate manipulation 39

Informational

3

Using same slot for proxy admin and governance 39

Zero address check for _revenueCollector 39

Redundant function and storage value overwriting 40

Checking callbackData_ length 40

Auth role potential impact 40

Additional checks for Liquidity's token configs 41

Redundant check 41

Sanity check for uint to int conversion 41

Code duplicate 42

Wrong slot numbers in comments 42

Unused imports 42

Redundant input variable 42

Redundant type conversion 43

Memory to calldata gas optimization 43

Redundant variable in scope 43

Code duplication 43

Incorrect BigMath sizes in comments 44

Double calculation of vault_ address 44

Unnecessary cast to payable address 44

Unrestricted maxLTV in StETHQueue 45

Optimization of rate calculation 45

Strict sanity check of TWAP periods 45

Negative tick culmulative processing 46

Revert with equal deltas 46

Incorrect logic of to_ in operate method of Vault 47

Informational

4

User can bypass the check in flashLoanMultiple 47

maxFlashLoan calculates an incorrect amount due to lack of subtracting of userBorrow_ from borrow

limit.
47

Unused library function 47

Informational

5

1. Project Brief

Instadapp

Fluid

30-10-2023 - 29-12-2023

a324cc2faccf3947c712f2c29ea0affa0620cbe5

f5a07116967103946791dffd1fbafa71e0a60828

Short Overview

Fluid Protocol is a DeFi lending and borrowing platform offering high loan-to-value ratios, innovative liquidation mechanisms,

and features like smart debt and collateral.

At the base of Fluid lies the Liquidity Layer, which serves as the foundation upon which other protocols can be built. This layer

serves as a central hub where liquidity from all protocols is consolidated. The Liquidity Layer allows protocols to deposit,

withdraw, borrow, and payback. End-users interact with the protocols, which in turn interact with the Liquidity layer.

Currently Fluid includes lending, vault, stETH, flashloan protocols, robust oracle system.

Title Description

Client

Project name

Timeline

Initial commit

Final commit

6

Project Scope

The audit covered the following files:

uniV3TWAP3Chainlink1Oracle.sol errorTypes.sol wstETHChainlink2HopOracle.sol

chainlink3HopOracle.sol fluidOracle.sol wstETHOracle.sol

chainlink2HopOracle.sol chainlink1HopOracle.sol error.sol

chainlink3HopOracleImpl.sol wstETHOracleImpl.sol chainlink2HopOracleImpl.sol

uniV3OracleImpl.sol chainlinkOracleImpl.sol TickMath.sol

FullMath.sol errorTypes.sol storageRead.sol

liquiditySlotsLink.sol tickMath.sol liquidityCalcs.sol

bigMath.sol errorTypes.sol events.sol

proxy.sol error.sol errorTypes.sol

error.sol main.sol events.sol

constantVariables.sol helpers.sol IVault.sol

main.sol events.sol variables.sol

main.sol errorTypes.sol variables.sol

error.sol helpers.sol errorTypes.sol

lendingRewardsRateModel.sol main.sol iTokenNativeUnderlying.sol

iTokenEIP2612Deposits.sol iTokenPermit2Deposits.sol events.sol

variables.sol lendingFactory.sol error.sol

vaultFactory.sol IVaultFactory.sol vaultT1Logic.sol

ERC721.sol main.sol structs.sol

errorTypes.sol events.sol variables.sol

proxy.sol error.sol errorTypes.sol

main.sol structs.sol events.sol

https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/uniV3TWAP3Chainlink1Oracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/wstETHChainlink2HopOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/chainlink3HopOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/fluidOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/wstETHOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/chainlink2HopOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/chainlink1HopOracle.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/implementations/chainlink3HopOracleImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/implementations/wstETHOracleImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/implementations/chainlink2HopOracleImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/implementations/uniV3OracleImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/implementations/chainlinkOracleImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/external/TickMath.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/oracle/external/FullMath.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/storageRead.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/liquiditySlotsLink.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/tickMath.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/liquidityCalcs.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/libraries/bigMath.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/infiniteProxy/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/infiniteProxy/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/infiniteProxy/proxy.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/infiniteProxy/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/core/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/core/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/core/constantVariables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/core/helpers.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/IVault.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/admin/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/admin/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaultT1/vault/common/variables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/flashloan/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/flashloan/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/flashloan/variables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/flashloan/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/flashloan/helpers.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/lendingRewardsRateModel.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/types/iTokenEIP2612Deposits.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/types/iTokenPermit2Deposits.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/iToken/variables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/lendingFactory.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/lending/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaults/factory/vaultFactory.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaults/factory/IVaultFactory.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaults/factory/deploymentLogics/vaultT1Logic.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/vaults/factory/ERC721/ERC721.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/structs.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/variables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/proxy.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/protocols/steth/error.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/errorTypes.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/userModule/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/userModule/structs.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/userModule/events.sol

7

main.sol structs.sol events.sol

proxy.sol structs.sol variables.sol

helpers.sol dummyImpl.sol error.sol

https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/adminModule/main.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/adminModule/structs.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/adminModule/events.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/proxy.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/common/structs.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/common/variables.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/common/helpers.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/dummyImpl.sol
https://github.com/Instadapp/fluid-contracts/blob/a324cc2faccf3947c712f2c29ea0affa0620cbe5/contracts/liquidity/error.sol

8

2. Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the following

classification:

Bugs leading to assets theft, fund access locking, or any other loss of funds to be transferred to any

party.

Bugs that can trigger a contract failure. Further recovery is possible only by manual modification of

the contract state or replacement.

Bugs that can break the intended contract logic or expose it to DoS attacks, but do not cause direct

loss of funds.

Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the Contractor, they are

assigned the following statuses:

Recommended fixes have been made to the project code and no longer affect its security.

The Customer is aware of the finding. Recommendations for the finding are planned to be resolved

in the future.

Severity Description

Critical

High

Medium

Informational

Status Description

Fixed

Acknowledged

9

3. Summary of findings

3 (3 fixed, 0 acknowledged)

8 (7 fixed, 1 acknowledged)

15 (9 fixed, 6 acknowledged)

40 (33 fixed, 7 acknowledged)

66 (52 fixed, 14 acknowledged)

4. Conclusion

During the audit of the codebase, 66 issues were found in total:

3 critical severity issues (3 fixed)

8 high severity issues (7 fixed, 1 acknoledged)

15 medium severity issues (9 fixed, 6 acknowledged)

40 informational severity issues (33 fixed, 7 acknowledged)

The final reviewed commit is f5a07116967103946791dffd1fbafa71e0a60828

Severity # of Findings

Critical

High

Medium

Informational

Total

https://github.com/Instadapp/fluid-contracts/blob/f5a07116967103946791dffd1fbafa71e0a60828
https://github.com/Instadapp/fluid-contracts/blob/f5a07116967103946791dffd1fbafa71e0a60828
https://github.com/Instadapp/fluid-contracts/blob/f5a07116967103946791dffd1fbafa71e0a60828

10

5. Findings report

CRITICAL-

01

The rate from LendingRewardRateModel is returned with the incorrect number

of decimals

Fixed at

df1195

Description

The rate returned from the getRate function of the LendingRewardRateModel is scaled up by 1e2, which results in 14

decimals instead of the intended 12.

Due to this precision adjustment, all following calculations are performed in 14 decimals, so as return value of getRate.

uint256 precisionAdjustment_ = RATE_PRECISION - INPUT_PARAMS_PERCENT_PRECISION;

CONSTANT1 is also calculated with wrong precision

CONSTANT1 = rateData_.rateAtTVLZero * RATE_PRECISION;

The rate is later used in _calculateNewTokenExchangePrice, but as the unchecked block assumes // rewardsRate is in 1e12,

totalReturnInPercent_ increases unexpectedly significant. This later enhances newTokenExchangePrice_. This exchange

price then passes through _updateRates straight to _executeDeposit and _executeWithdraw functions. Finally, overpricing

leads to wrong shares calculation in such way that allows pool draining.

PoC was handed to client.

Recommendation

-uint256 precisionAdjustment_ = RATE_PRECISION - INPUT_PARAMS_PERCENT_PRECISION;

+uint256 precisionAdjustment_ = RATE_PRECISION / INPUT_PARAMS_PERCENT_PRECISION;

-CONSTANT1 = rateData_.rateAtTVLZero * RATE_PRECISION;

+CONSTANT1 = rateData_.rateAtTVLZero * precisionAdjustment_;

https://github.com/Instadapp/fluid-contracts/commit/df1195839de91941abda278b3aef675f2a357940
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/lendingRewardsRateModel.sol#L174
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L70
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L79
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L95
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L124
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L205
https://github.com/Instadapp/fluid-contracts/blob/7ee84cf70d8d47825122347f00b25d5e45250ec1/contracts/protocols/lending/iToken/main.sol#L233

11

CRITICAL-

02

BigMathVault library contains math error that causes debtFactor to be calculated

completely wrong

Fixed at

9573a2

Description

At the end of liquidation, branch's debt factor updates with mulDivBigNumber function, but result is wrong.

At Line 498 branch_.debtFactor is initialized and its value is set to 50-bit number. According to protocol logic function

mulDivBigNumber() should return 50-bit value, but it could exceed 50 bit. This leads to an underestimation of the liquidated

position.

 // branchData_ >> 116 contains branch debtFactor_ in BigNumber format and could exceed 50 bit. So operation & could

lead to wrong conversion from BigNumber

memoryVars_.minimaDebtFactor = (branchData_ >> 116) & X50;

positionRawDebt_ = positionRawDebt_.mulDivNormal(

 memoryVars_.minimaDebtFactor, // <-- wrongly trimmed BigNumber

 memoryVars_.connectionFactor // <-- Here we assume that the connectionFactor value equals to initial branch

debtFactor value

);

In this example memoryVars_.minimaDebtFactor will be wrongly converted and maybe way less than

memoryVars_.connectionFactor which will result in position reset.

PoC: test/foundry/vaultT1/vault /PoC_debt_factor_overflow.t.sol

Incorrect value returns due to a mistake in return value calculation.

result =

 (_resultNumerator << COEFFICIENT_SIZE_DEBT_FACTOR) + // should be EXPONENT_SIZE_DEBT_FACTOR

 (bigNumber & EXPONENT_MAX_DEBT_FACTOR) +

 diff -

 PRECISION; // + exponent

Also, the optimization of the diff calculation is incorrect. In both cases, diff must be greater by 1.

uint256 diff = (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1)

 ? COEFFICIENT_PLUS_PRECISION_MINUS_1 // In this case diff should be 99, not 98

 : (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_2_MINUS_1)

 ? COEFFICIENT_PLUS_PRECISION_MINUS_2 // In this case diff should be 98, not 97

 : BigMathMinified.mostSignificantBit(_resultNumerator);

Recommendation

We recommend changing the constant in the result calculation

uint256 diff = (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1)

- ? COEFFICIENT_PLUS_PRECISION_MINUS_1

+ ? COEFFICIENT_PLUS_PRECISION_MINUS_1 + 1

 : (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_2_MINUS_1)

- ? COEFFICIENT_PLUS_PRECISION_MINUS_2

+ ? COEFFICIENT_PLUS_PRECISION_MINUS_2 + 1

 : BigMathMinified.mostSignificantBit(_resultNumerator);

https://github.com/Instadapp/fluid-contracts/commit/9573a2c2667390102707847a85cc4bab28dbea84
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L801
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L498
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/libraries/bigMathVault.sol#L59
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/libraries/bigMathVault.sol#L72

12

result =

- (_resultNumerator << COEFFICIENT_SIZE_DEBT_FACTOR)

+ (_resultNumerator << EXPONENT_SIZE_DEBT_FACTOR) +

 (bigNumber & EXPONENT_MAX_DEBT_FACTOR) +

 diff -

 PRECISION; // + exponent

13

CRITICAL-03 Storing invalid debt factor value in tick Fixed at e9f9b0

Description

During liquidation protocol passes through all ticks that have debt, accumulates debt and liquidates it, updating the

debtFactor_ value after every iteration at Line 825. If some tick is not liquidated, then at Lines 617 - 627 its state is changed

and branch_.debtFactor is stored as tick's debt factor. It is used to recalculate position after liquidation in function

fetchLatestPosition():

if (((tickData_ >> 1) & X24) == positionTickId_) {

 // fetching from tick data itself

 // ...

 memoryVars_.connectionFactor = (tickData_ >> 56) & X50; // <-- here connectionFactor is tick's debt factor saved in

liquidation

} else {

 {

 // Fetching tick's liquidation data. One variable contains data of 3 IDs. Tick Id mapping is starting from 1.

 // ...

 memoryVars_.connectionFactor = (tickLiquidationData_ >> 31) & X50; // <-- here connectionFactor is tick's debt

factor saved in liquidation

 }

}

// ...

// ...

// ...

positionRawDebt_ = positionRawDebt_.mulDivNormal(// <-- position debt is calculated based on initial tick's debt

factor and final branch's debt factor

 memoryVars_.minimaDebtFactor,

 memoryVars_.connectionFactor // <-- here we assume that tick's branch was not merged

);

Because liquidation occurs iteratively ticks in one branch should have different initial debt factors. At Line 627

branch_.debtFactor is saved, which is only updated (we don't account for merge) at Line 801 when liquidation is over. Due to

this logic positions with ticks, that were liquidated later in the cycle, will be calculated incorrectly and will underestimate debt

and collateral.

PoC: test/foundry/vaultT1/vault/PoC_initial_tick_debt_factor.t.sol

Recommendation

It is recommended to save branch_.debtFactor in ticks multiplying it by current debtFactor_ or updating branch_.debtFactor

after every iteration. E.g

https://github.com/Instadapp/fluid-contracts/commit/e9f9b05ea6438536626d50f7961264edbf4cffb6
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L825
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L617
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L135
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L627
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L801

14

// ...

tickData[currentData_.tick] =

 1 |

 (((temp2_ >> 1) & X24) << 1) |

 (branch_.id << 26) |

 (branch_.debtFactor.mulDivBigNumber(debtFactor_) << 56);

// ...

15

HIGH-01 Incorrect supplyExchangePrice calculation Fixed at 498ed4

Description

At Lines 109 - 110 supplyExchangePrice_increase is calculated and then added to supplyExchangePrice.

supplyExchangePrice is a number of normal tokens per one raw token. But in code numerator is in normal tokens and

denominator is also in normal format:

temp_ = (temp_ * EXCHANGE_PRICES_PRECISION) / // <- here temp_ is supply increase in normal tokens

 (tokenData_.supplyRawInterest * tokenData_.supplyExchangePrice); // <- multiplication raw tokens by price gives us

total number of supply tokens in normal format

tokenData_.supplyExchangePrice += temp_;

So, actually, temp_ is not supplyExchangePrice_increase, it is just increase of normal tokens. This causes underestimation

of accrued interests and results in less profit for lenders.

Recommendation

It is recommended to count supplyExchangePrice_increase based on this formula:

temp_ = temp_ / tokenData_.supplyRawInterest;

tokenData_.supplyExchangePrice += temp_; // <- now temp_ is in correct price format

https://github.com/Instadapp/fluid-contracts/commit/498ed4ade86b44d7c83ecbbff88d871674ef73ba
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L109

16

HIGH-02 Incorrect extract of inFrom_ address Fixed at 0d00fb

Description

At Line 561 inFrom_ address is extracted from callbackData_, but bytes memory location is not taken into account. In

memory bytes consists of two parts: first 32 bytes with data length, and second one is actual data. So when pad is added to

callbackData_ in assembly, it begins not from actual data, but from slot with length and extraction goes wrong:

assembly {

 inFrom_ := mload(add(callbackData_, sub(mload(callbackData_), 20)))

 // ^- here pad is calculated and added to length slot, not to actual memory slot with data

}

Also with abi.encode() address variable will be padded with zeroes on the left to result in total 32 bytes. So, 32 bytes should

subtracted from length, because assembly expects address with leading zeros. When it is simple 20 bytes, conversion will

be also incorrect.

Such extraction may lead to incorrect checks passing and detecting DEX-protocols.

Recommendation

It is recommended to modify extraction of address from callbackData_ to take into account memory location of bytes and

conversion in assembly:

assembly {

 inFrom_ := mload(add(add(callbackData_, 32), sub(mload(callbackData_), 32)))

}

https://github.com/Instadapp/fluid-contracts/commit/0d00fb11c8e88820dbbae9764d86f1fc5d3cac98
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L561

17

HIGH-03 Impossible to change the borrowing mode of a user in the Liquidity Layer Fixed at 14de0b

Description

To change the mode of a user we need to call the updateUserBorrowConfigs method of AdminModule of Liquidity Layer.

Let's look at the part where the mode changes, e.g. Lines739-771.

//

totalBorrowRawInterest_ = tokenData_.borrowRawInterest;

totalBorrowInterestFree_ = tokenData_.borrowInterestFree;

// read current user borrowing & borrow limit values

borrowingConversion_ = (userBorrowData_ >> 1) & X64; // here borrowingConversion_ = user borrow amount

borrowingConversion_ =

 (borrowingConversion_ >> DEFAULT_EXPONENT_SIZE) <<

 (borrowingConversion_ & DEFAULT_EXPONENT_MASK);

//

if (userBorrowData_ & 1 == 0 && userBorrowConfigs_[i].mode == 1) {

 //

 // decreasing interest free total borrow

 totalBorrowInterestFree_ -= borrowingConversion_; // total = total - user borrow

 // problem here -------^

 //

} else if (userBorrowData_ & 1 == 1 && userBorrowConfigs_[i].mode == 0) {

 //

 // decreasing raw (with interest) borrow

 totalBorrowRawInterest_ -= borrowingConversion_; // total = total - user borrow raw

 // problem here -------^

 //

}

borrowingConversion_ is a borrowed amount of a user whose mode is changed. totalBorrowRawInterest_ is the total

borrow amount of users whose mode is 1 and totalBorrowInterestFree_ is the total borrow amount of users whose mode is 0

.

Due to calculations in UserModule borrowingConversion_ is stored rounded up(link). totalBorrowRawInterest_ and

totalBorrowInterestFree_ are stored rounded down(link1, link2).

This leads to arithmetic underflow if there is only one protocol with a particular mode, let it be mode = 0. Then

totalBorrowInterestFree_ should be equal to borrowingConversion_, cause there is only one protocol with this mode. But

totalBorrowInterestFree_ is rounded down and borrowingConversion_ is rounded up so

totalBorrowInterestFree_ - borrowingConversion_ < 0. That's a place where underflow happens.

So if we once have 2 different protocols with different modes it is impossible to make all protocols have the same mode

cause while we change them one by one the situation where only one protocol has a particular mode and others have

another mode will occur. E.g. switch all modes to become 0 or 1.

https://github.com/Instadapp/fluid-contracts/commit/14de0b6efdf18ee880e336e3eb903c161e3fa0a7
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L624
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L739C1-L771C18
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L156
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L323
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L299

18

Recommendation

We recommend adding a check here(link1, link2) that the subtracted is less than the reduced like

if (totalBorrowInterestFree_ < borrowingConversion_) {

 totalBorrowInterestFree_ = 0;

} else {

 totalBorrowInterestFree_ -= borrowingConversion_;

}

and

if (totalBorrowRawInterest_ < borrowingConversion_) {

 totalBorrowRawInterest_ = 0;

} else {

 totalBorrowRawInterest_ -= borrowingConversion_;

}

Also consider rounding up the total borrowed amounts here(link1, link2).

HIGH-04 DOS of iTokens markets Fixed at 72c32e

Description

Function createToken() is open and anyone can create iToken for certain asset if this underlying is configured in Liquidity.

Address of iToken is deteremined only by asset address. So if iToken is already deployed, there would be no possiblity to

deploy iToken with the same asset, even of a different type. Caller also provides type for iToken. He can choose

NativeUnderlying for asset he would like to DOS. This will most likely pass the check in Liquidity, because at Lines 163 - 165

NATIVE_TOKEN_ADDRESS will be choosed for further check. NativeUnderlying type of iToken blocks any deposits and

withdrawals for regular tokens in underlying.

bytes32 liquidityExchangePricesSlot_ = LiquiditySlotsLink.calculateMappingStorageSlot(

 LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,

 iTokenType_ == ITokenType.NativeUnderlying

 ? NATIVE_TOKEN_ADDRESS

 : asset_

); // <- here any token type can be choosed with any asset_, so anyone can use ITokenType.NativeUnderlying

if (LIQUIDITY.readFromStorage(liquidityExchangePricesSlot_) == 0) {

// ^- this check could be passed because NATIVE_TOKEN_ADDRESS would be used in liquidityExchangePricesSlot_

// instead of asset_ address

 revert FluidLendingError(ErrorTypes.LendingFactory__LiquidityNotConfigured);

}

Functions _executeDeposit() and _executeWithdraw() are overridden and call withdraw() and deposit() of underlying tokens,

which most tokens don't have.

Recommendation

It is recommended to restrict msg.sender of createToken() and use singleton pattern for iToken of NativeUnderlying type.

With msg.sender restriction salt can be calculated from asset_ address and ITokenType to allow creation different iToken

types for the same asset_.

https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L744
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L760
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L323
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L299
https://github.com/Instadapp/fluid-contracts/commit/72c32ec56fb5f3a353ffba586b9afce8e752651c
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L146
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L163
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L88
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L136

19

HIGH-05 Wrong slippage checks Fixed at 01c81a

Description

In mint() function there is a slippage check:

if (assets_ < minAmountOut_) {

 revert FluidLendingError(ErrorTypes.iToken__MinAmountOut);

}

But it is logically wrong, because user indicates amount of share he wants to mints and should indicate max amount of

assets_ he would like to spend during mint. So this check is meaningless and opens possibility to manipulations. E.g.

someone sees mint transaction, then makes big withdraw in current block to inflate rate and tokenExchangePrice_ in the

next block. This action will decrease supplyRawAmount in Liquidity, so supplyExchangePrice will be higher, at the same

time total shares will decrease and rewardsRate will be also higher resulting in higher tokenExchangePrice in iToken.

Same issue:

Function withdrawWithSignature(): there shoud be check shares_ doesn't exceed maxAmountOut_

Function redeemWithSignature(): there shoud be check assets_ are not less than minAmountOut_

Function mintWithSignature(): there should be check assets_ doesn't exceed maxAmountOut_

Function mintWithSignature(): there should be check assets_ doesn't exceed maxAmountOut_

Function mintETH(): there should be check assets_ doesn't exceed maxAmountOut_

Function withdrawETH(): there shoud be check shares_ doesn't exceed maxAmountOut_

Function withdrawWithSignatureETH(): there shoud be check shares_ doesn't exceed maxAmountOut_

Recommendation

It is recommended to fix slippage checks to avoid possible manipulations during deposits and withdrawals.

https://github.com/Instadapp/fluid-contracts/commit/01c81afaf12b66b507b2d3fc138d364afba8357a
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L470
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L573
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L617
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenEIP2612Deposits.sol#L69
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenPermit2Deposits.sol#L83
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L223
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L256
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L320

20

HIGH-06 Possible reward overpayment Fixed at fd6260

Description

The totalReturnInPercent_ factor calculates reward term as multiplication of rewardsRate_ and timeElapsed.

totalReturnInPercent_ =

 (rewardsRate_ * (block.timestamp - _lastUpdateTimestamp)) /

 _SECONDS_PER_YEAR;

The rewardsRate_ will be > 0 only within [START_TIME, END_TIME] timeframe.

The _lastUpdateTimestamp updates if:

1. Admin adds rewards model via updateRewards.

2. Admin adds rewards via fundRewards after model is set.

3. Anyone withdraws/deposits while rewards are active i.e. address(rewardsRateModel_) != address(0);

4. Anyone calls updateRates.

---------------|---------|-----------------|---------

updateRewards--^ ^--START ^--END

If arbitrary users dont make new deposits/withdrawals (or updateRates) until the model's START_TIME is reached, the

_lastUpdateTimestamp variable will be outdated, the actual duration of rewards will be longer. Which means the protocol

users that already have shares, are incentivised to not interact with the protocol to get extra rewards. (More likely to happen

in small markets).

If reward amounts calculated precisely, even small overpayment might lead to DOS for latest withdraw if not reimbursed by

the protocol.

Recommendation

We recommend funding rewards right before the START_TIME or calculating the rewards only within the specified timeframe

[START_TIME, END_TIME].

https://github.com/Instadapp/fluid-contracts/commit/fd626031d042f9e5b28d3ca537f7ccd6a7b89e71
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L79
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L79
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L79
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L176
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L176
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L176
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L383
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L383
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L383
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L399
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L399
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L399
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L233
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L205
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L407
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L407
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L407

21

HIGH-07 Possible bad debt in StETHQueue Acknowledged

Description

The StETHQueue contract allows users to borrow ETH against Lido's WithdrawalQueue NFT withdrawal requests, with the

max amount borrowed based on a percentage (maxLTV) of their withdrawing stETH amount. The borrowed ETH comes from

the Liquidity contract, and users are expected to repay the borrowed amount plus accrued interest.

An issue arises when the repay amount exceeds the stETHAmount. In such cases, users lack both the capability and the

incentive to repay the debt, leading to an irrecoverable bad debt. The StETHQueue contract accumulated debt in the

Liquidity contract without a possibility of recovering it with "bad" withdrawal requests.

Recommendation

It is recommended to implement a liquidation mechanism. This mechanism should allow to claim requests when the ratio of

repayAmount to stETHAmount exceeds a predetermined threshold.

Client's comments

For this we:

a) manage the risk for Lido slashing via the maxLTV, with some leftover risk that we accept

b) if a user doesn't claim and the increase through borrow rate leads to outgrowing the collateral value the method

claim() is open to execute by anyone and we can trigger it ourselves.

c) The stETH protocol contract is upgradeable to deal with any unforeseen cases.

The incentive to repay the bad debt is for the owner to avoid it. We do however really not expect a depeg of stETH to

happen to the extent where it would go beyond the maxLTV limit (or a slashing so drastic). As far as we know this is a

widely accepted risk in the industry by now and we decided to also accept this risk. In the event that it would happen

after all, we accept that it might take a bit longer to first implement a solution (e.g. similar to the one proposed) and

upgrade the contract before being able to resolve the situation.

HIGH-08 Incorrect work of UniV3CheckFallbackCLRSOracle in the first mode Fixed at a413c2

Description

In the first mode, when _RATE_SOURCE == 1, there should be no checks for exchangeRate_. But in condition at Lines 68 - 71

there is no return statement, so execution continues. It will always revert on delta check at Lines 90 - 92 because value

checkRate_ won't be set and will equal zero.

Recommendation

It is recommended to return exchangeRate_ as it was calculated when UniV3CheckFallbackCLRSOracle is configured on

the first mode.

https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/commit/a413c2586c9e40f36603168f882d02e945ede228
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/oracles/uniV3CheckFallbackCLRSOracle.sol#L68
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/oracles/uniV3CheckFallbackCLRSOracle.sol#L90

22

MEDIUM-01 Rounding errors in calcTokenData Fixed at 122679

Description

In calcTokenData, performing a division in the middle of a calculation can result in smaller supplyExchangePrice than

expected. For instance, 100 rounds of supply-borrow result in supplyExchangePrice of 1020325352672 when division is

performed at the end, and 1020325352650 if not.

Recommendation

We recommend rearanging operations to always perform divisions as late as possible, while also ensuring the intermediate

results do not overflow. e.g.

-temp_ = (tokenData_.borrowExchangePrice * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR *

FOUR_DECIMALS);

-tokenData_.borrowExchangePrice += temp_;

+ temp_ = (tokenData_.borrowExchangePrice * temp_ * secondsSinceLastUpdate_);

+ tokenData_.borrowExchangePrice += temp_ / (SECONDS_PER_YEAR * FOUR_DECIMALS);

...

-temp_ = (temp_ * EXCHANGE_PRICES_PRECISION) / (tokenData_.supplyRawInterest * tokenData_.supplyExchangePrice

);

+temp_ = (temp_ * EXCHANGE_PRICES_PRECISION) / (tokenData_.supplyRawInterest * tokenData_.supplyExchangePrice

) / (FOUR_DECIMALS * SECONDS_PER_YEAR);

https://github.com/Instadapp/fluid-contracts/commit/12267949fb1957192acb1f1a508381eee935e2a3
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L49

23

MEDIUM-02 Incorrect exchange prices extraction Fixed at 0269c2

Description

The updateTokenConfigs function extracts the exchange prices from the storage _exchangePricesAndConfig via shifting

the value.

supplyExchangePrice_ = (exchangePricesAndConfig_ >> 97) & X64;

borrowExchangePrice_ = (exchangePricesAndConfig_ >> 161) & X64;

Although exchange prices are packed in _exchangePricesAndConfig with offsets

BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91 and

BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155 respectively, offsets in the code are different.

Due to the wrong offsets supplyExchangePrice_ will not contain the first 6 bits of actual value, moreover it will have the first

6 bits of the actual borrowExchangePrice. Following the same logic, borrowExchangePrice_ will not have 6 bits of the saved

value and also might become greater due to reading the supply ratio flag and 5 bits of the supply ratio value.

After the storage read, it may occur that one of the extracted values will be 0, which may lead to the resetting of both

exchange prices. Or on contrary, it will not reset values when it has to.

if (supplyExchangePrice_ > 0 && borrowExchangePrice_ > 0) {

 ...

 // updates exchange prices

 ...

} else {

 supplyExchangePrice_ = EXCHANGE_PRICES_PRECISION;

 borrowExchangePrice_ = EXCHANGE_PRICES_PRECISION;

}

Recommendation

We recommend using implemented constant values as offsets.

https://github.com/Instadapp/fluid-contracts/commit/0269c2b23b6e28d70e4097247090d24bfda95566
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L360
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L360
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L360
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L386
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquiditySlotsLink.sol#L29

24

MEDIUM-03 Excessive expandPercent leads to underflow in withdrawal limit Fixed at 583801

Description

The function updateUserSupplyConfigs lacks a sanity check to ensure that the expandPercent value does not exceed

FOUR_DECIMALS, though there is a check to confirm that expandPercent fits within 14 bits (which limits it to 16383).

Exceeding FOUR_DECIMALS will cause an underflow in the function calcWithdrawalLimitBeforeOperate, which next will

result in a DoS for user withdrawals.

function calcWithdrawalLimitBeforeOperate(

uint256 userSupplyData_,

uint256 userSupply_

) internal view returns (uint256 currentWithdrawalLimit_) {

...

uint256 expandPercent_ = (userSupplyData_ >> 162) & X14;

uint256 maxWithdrawableLimit_ = (expandPercent_ * userSupply_) / FOUR_DECIMALS;

// ^- can be higher than userSupply_

...

uint256 minWithdrawalLimit_;

unchecked {

// subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount of userSupply_

minWithdrawalLimit_ = userSupply_ - maxWithdrawableLimit_;

// ^- however, it can underflow

}

if (minWithdrawalLimit_ > currentWithdrawalLimit_) {

currentWithdrawalLimit_ = minWithdrawalLimit_; // <-- will put underflowed value

}

}

The result will happen _supplyOrWithdraw function due to condition:

if (amount_ < 0 && userSupply_ < newWithdrawalLimit_) { // <-- will revert here due to underflow

 revert FluidLiquidityError(ErrorTypes.UserModule__WithdrawalLimitReached);

}

Recommendation

We recommend adding a sanity check in calcWithdrawalLimitBeforeOperate to ensure that expandPercent does not exceed

FOUR_DECIMALS.

https://github.com/Instadapp/fluid-contracts/commit/5838010d5c83e52f81cfca2e25acad53d7ea7ad3
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L438
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L438
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L438
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L159
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L159
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L159

25

MEDIUM-04 Sanity checks for utilization Fixed at 336754

Description

Based on the layout in _exchangePricesAndConfig mapping utilization occupies 14 bits. During calculations in _operate()

function at Line 387 utilization is stored as uint256 and potentially could exceed 16386 (2**14 - 1). This could happen when

all lent tokens are borrowed and borrow rate is very high - its maximum value could be up to 650%. So during saving

utilization value in storage at Lines 443-453, overwrite could happen and values of other variables may not be saved

correctly.

Recommendation

It is recommended to add sanity after calculating utilization value and limit it.

MEDIUM-05 Unsustainable economy of iToken Acknowledged

Description

The iToken contract accepts user deposits, which are then transferred to the Liquidity contract. The iToken contract holds a

stake in the Liquidity contract, funded by user deposits and accessible for withdrawal by users.

iToken operates on a unique supply rate model, incentivizing users to deposit. The growth of iToken shares is based on the

growth of liquidity supply exchange price and its rewards rate model, which calculates rewards based on the current TVL.

The contract should maintain the invariant that every user can withdraw their entire share at any time. However, under the

active rewards rate model, a user's withdrawal amount may exceed their share in Liquidity. This discrepancy creates a gap

between the estimated TVL in totalAssets() and the actual balance in Liquidity, violating the invariant. Consequently, this

gap could prevent users from withdrawing their assets.

Although the updateRewards function is intended to fund the rewards, it does not guarantee users' ability to withdraw their

funds (even without rewards).

Recommendation

We recommend establishing a separate balance within the contract specifically for rewards. This balance should be

replenished through updateRewards and accessible for withdrawal via a separate function. This approach would mitigate

the gap issue, ensuring more reliable withdrawals for users.

Client's comments

We will implement off-chain automation for this that will fund rewards whenever there is a difference in totalAssets() vs.

liquidityBalance(). Depositors can thus be sure they will get the rewards and withdrawals will be possible at all times,

even though there is admittedly some trust required there. Not perfect but good enough as rewards are only used at the

initial launch of an iToken.

Note that we added a cap for rewards rate at 25% to ensure rewards could not be "inflated" as a simple additional

measure in Commit1 and Commit2.

https://github.com/Instadapp/fluid-contracts/commit/3367545e114613fe3ffc84859445ff9134d566d4
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/variables.sol#L80
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/variables.sol#L80
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/variables.sol#L80
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L387
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L443
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L378
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L378
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L378
https://github.com/Instadapp/fluid-contracts/pull/210/commits/86827bf31245209226d4927714cf9bbb7ac62ea0
https://github.com/Instadapp/fluid-contracts/pull/210/commits/e8fa2a3bff3b8fda2ffd3a55fe0a7c410911e989

26

MEDIUM-06 Mixed compound rewards of iToken Acknowledged

Description

The exchange price of iToken is computed as follows:

Therefore, iToken's rewards, including the growth in the liquidity supply exchange price, accumulate in every contract

interaction, representing a compound reward. This implies that the rewards are not limited solely by the rewards rate model.

Recommendation

We recommend separating rewards and growth of liquidity supply exchange price, so rewards can be capped by rewards

rate model.

Client's comments

So depending on the rate, in some cases, it is beneficial for lenders to not have anyone interact whereas in some cases

it would be beneficial to trigger the compounding to earn more rewards. Rewards will only go on for a few months after

launching a new iToken. Absolute precision is not required here.

Compounding every second at 10% for 3 months will result in the user getting 2.5315% rather than getting 2.5% and it's

fine. As long as there is no exploit possible in a sort of looping then this difference is ok.

rewardsRate = rewardsRateModel(totalSupply ⋅ prevTokenExchangePrice)
totalReturnInPercent = ​ +

secondsPerY ear
rewardsRate⋅timeElapsed

​

prevLiquiditySupplyExchangePrice
liquiditySupplyExchangePrice−prevLiquiditySupplyExchangePrice

tokenExchangePrice = (1 + totalReturnInPercent) ⋅ prevTokenExchangePrice

https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol

27

MEDIUM-07 Unclear shares_ amount in redeemWithSignature method Fixed at b09231

Description

In order to redeem with signature sender must provide exact shares_ amount to pass checks in permit method otherwise it

reverts.

However it is unclear before real execution how much shares_ will be passed to permit function.

Let's closer look here

function redeemWithSignature(

 uint256 shares_,

 address receiver_,

 address owner_,

 uint256 minAmountOut_,

 uint256 deadline_,

 bytes calldata signature_

) external virtual nonReentrant returns (uint256 assets_) {

 // ...

 assets_ = previewRedeem(shares_);

 // ...

 shares_ = _executeWithdraw(assets_, receiver_, owner_);

 //

 (uint8 v_, bytes32 r_, bytes32 s_) = _splitSignature(signature_);

 // ...

 // spender = msg.sender

 permit(owner_, msg.sender, shares_, deadline_, v_, r_, s_);

 // ...

}

shares_ are recalculated from _executeWithdraw method and can differ from provided shares.

The reason is following. Provided shares_ are converted to assets_ via previewRedeem method which itself uses such a

formula:

return shares_.mulDivDown(tokenExchangePrice_, _EXCHANGE_PRICES_PRECISION);

// ^-- rounded down

Later calculated assets_ converted to new shares_ in _executeWithdraw method using this formula:

sharesBurned_ = assets_.mulDivUp(_EXCHANGE_PRICES_PRECISION, tokenExchangePrice_);

// ^-- rounded up

Due to different rounding types the resulting shares_ can differ from provided so permit will likely revert.

Recommendation

We recommend adding one more argument storing the exact amount of shares user wants to spend and check that resulting

shares_ equal to the requested or do not exceed it like

https://github.com/Instadapp/fluid-contracts/commit/b092319675030b57c75f11d39dc490f4a0e54758
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L327
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L304
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L224
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L237

28

function redeemWithSignature(

 uint256 sharesToPermit_

 uint256 shares_,

 // ...

) external virtual nonReentrant returns (uint256 assets_) {

 // ..

 shares_ = _executeWithdraw(assets_, receiver_, owner_);

 if (shares_ > sharesToPermit_) {

 revert "YOUR_FluidError here";

 }

 // ...

 permit(owner_, msg.sender, sharesToPermit_, deadline_, v_, r_, s_);

 spendAllowance(owner, msg.sender, shares_);

}

MEDIUM-08 DOS via reward model Fixed at 86827b

Description

In the getRate function, reward model checks if the calculated rate is less than MAX_RATE and reverts if it's not.

if (rate_ > MAX_RATE) {

 revert FluidLendingError(ErrorTypes.LendingRewardsRateModel__MaxRate);

}

If the underlying function allows such rates that might reach the maximum value, this line might lead to the DOS of all the

linked iToken contracts.

Arbitrary users can not withdraw their assets as the call to reward contract happens before _burn until tvl reaches the value

getRate(tvl) > MAX_RATE.

uint256 tokenExchangePrice_ = _withdrawFromLiquidity(assets_, receiver_);

tokenExchangePrice_ = _updateRates(tokenExchangePrice_, false);

// calls to the g̀etRate ̀--^

sharesBurned_ = assets_.mulDivUp(_EXCHANGE_PRICES_PRECISION, tokenExchangePrice_);

if (sharesBurned_ == 0) {

 revert FluidLendingError(ErrorTypes.iToken__RoundingError);

}

// reduces totalSupply() --\/

burn(owner, sharesBurned_);

Recommendation

We recommend returning the MAX_RATE value if rate excesses the maximum.

if (rate_ > MAX_RATE) {

 rate_ = MAX_RATE;

}

https://github.com/Instadapp/fluid-contracts/commit/86827bf31245209226d4927714cf9bbb7ac62ea0
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L174
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L174
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L174
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L211
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L224

29

MEDIUM-09 Incorrect MAX_RATE in the rewards model Fixed at 86827b

Description

The MAX_RATE is defined as constant in the lending reward model contract as 20000%, while comments state the

maximum value must be 200%. The high amount for MAX_RATE might never be reached.

uint256 internal constant MAX_RATE = 20_000 * RATE_PRECISION;

Recommendation

We recommend reducing the actual maximum reward rate.

MEDIUM-10 Tick IDs overflowing Acknowledged

Description

The variables.sol contract contains positionData and tickData mappings in which 24 bits are allocated for users tick IDs.

Considering that tick IDs gradually increase with each liquidation, 24 bits ~ 10^7 may not be enough for the long-term

operation of the protocol(about 10^7 liquidations).

In particular, DOS may occur due to overwriting of ticks: operate function has such an if-else construction:

if (((temp_ & 1) == 1) || (((temp_ >> 1) & X24) > o_.tickId)) { //<-- invalid tickID due to overflow

// User got liquidated

 //...

}

else {

// User didn't got liquidated

 //...

}

Recommendation

We recommend increasing the number of bits for TickID.

Client's comments

I believe the overflow will never happen as let's consider a scenario where the same tick is getting liquidated every hour.

That means collateral price went down, the tick became available for liquidation, collateral price went up, the user(s)

created a new position at the same tick, and the collateral price went down again.

So for a tick to get liquidated again this 4-step process needs to happen again and again. Considering that it happens

every 1 hour then it'll take about this many seconds to overflow: (2**24 - 1) * 60 = 1006632900 secs = 31.9201198630137

years. So the collateral price needs to revolve around that tick for ~32 years in order for tickId to overflow.

https://github.com/Instadapp/fluid-contracts/commit/86827bf31245209226d4927714cf9bbb7ac62ea0
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L59
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L59
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingRewardsRateModel.sol#L59
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L361
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L130

30

MEDIUM-11 Wrong debt calculation of liquidated positions Acknowledged

Description

Position's debt consists of two parts: real users' debt and dust debt:

During liquidations whole debt is liquidated, so both parts of it decrease.

E.g. is percent of debt after liquidation, so:

In operate() function at Lines 130 - 163 debt of liquidated position is calculated. In function fetchLatestPosition()

positionRawDebt_ is whole debt, including user's and dust. Then user's debt is calculated at Line 156. But dust debt wasn't

recalculated in fetchLatestPosition(), so user debt will be:

Instead of:

This leads to underestmation of user's debt amount.

Recommendation

It is recommended to recalculate dust debt due to liquidation the same way as total debt is recalculated in

fetchLatestPosition ().

Client's comments

For user, the actual debt is debt - dustDebt. Users also don't pay any extra interest on dustDebt. When the liquidation

happens it happens of a tick so it contains totalDebt = debt + dustDebt, on liquidation totalDebt starts to get liquidated

but when the user fetches his position after liquidation the user gets debt = debtAfterLiquidation - dustDebt. So all the

liquidation is deducted from their actual debt. With dustDebt user's liquidation starts to happen about ~0.15% early.

debt = users_debt + dust_debt

x

debt ∗ ​ =100
x users_debt ∗ ​ +100

x dust_debt ∗ ​100
x

user_debt_liq = debt ∗ ​ −100
x dust_debt

user_debt_liq = debt ∗ ​ −100
x dust_debt ∗ ​100

x

https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L130
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L135
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L156

31

MEDIUM-12 Logical error in StETHQueue.queue leading to revert Fixed at ae9b0a

Description

The StETHQueue.queue function contains a logical error related to the dividing on withdrawal batches, which leads to revert

when stETHAmount_ % MAX_STETH_WITHDRAWAL_AMOUNT == 0.

...

bool lastAmountExact_;

uint256 fullAmountsLength_ = stETHAmount_ / MAX_STETH_WITHDRAWAL_AMOUNT;

unchecked {

lastAmountExact_ = stETHAmount_ % MAX_STETH_WITHDRAWAL_AMOUNT == 0;

amounts_ = new uint256[](fullAmountsLength_ + (lastAmountExact_ ? 0 : 1));

// ^- will have length of fullAmountsLength_ if lastAmountExact_

}

for (uint256 i; i < fullAmountsLength_;) {

amounts_[i] = MAX_STETH_WITHDRAWAL_AMOUNT;

unchecked {

++i;

}

}

if (lastAmountExact_) {

amounts_[fullAmountsLength_] = MAX_STETH_WITHDRAWAL_AMOUNT;

// ^- will revert due to index error

} ...

...

In the case of lastAmountExact_ == true, the amounts is allocated correctly after the for loop. The if-branch after is incorrect

and will lead to a revert due to an index error.

Recommendation

It is recommended to remove the if-branch when lastAmountExact_ == true.

MEDIUM-13 Incorrect rounding in StETHQueue.claim Fixed at 3a4a41

Description

The StETHQueue.claim function contains an issue with the rounding method used in calculating the repayAmount_. The

current implementation rounds down due to simple division:

repayAmount_ = (claim_.borrowAmountRaw * _getLiquidityExchangePrice()) / EXCHANGE_PRICES_PRECISION;

This rounding down can result in the repayAmount_ being slightly less than what it should be, leading to an incomplete

repayment of the debt.

Recommendation

It is recommended to adjust the calculation of repayAmount_ to round up instead of down.

https://github.com/Instadapp/fluid-contracts/commit/ae9b0aa81773a316e1fea83879733fea8e8f9de2
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L178
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L178
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L178
https://github.com/Instadapp/fluid-contracts/commit/3a4a4173d5e7cd15f40e8125539a8afb1e4ee71c
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L242
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L242
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L242

32

MEDIUM-14 Stale data in chainlink oracles Acknowledged

Description

It's better to check oracles for stale data because some data can be outdated.

Same can be applied for redstone implementation.

Also, If the project will be launched on L2's where can be Sequencer, it's better to add a check for it.

Recommendation

We recommend adding checks for stale data.

Client's comments

For mainnet we decided to accept the risk regarding stale data similar to other major DeFi protocols (as far as we know)

e.g. Compound, Aave. Note that we aim to use Oracles that implement the check against another Oracle as

implemented wherever possible, or even the UniV3 TWAP Oracle for any token pair with sufficient liquidity.

For L2's / other networks we will implement stale data / other necessary checks as suggested, added a part to the docs

in: https://github.com/Instadapp/fluid-contracts/pull/222/commits/736f42cf4942398ec7d6dad328a3818085853179

https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/chainlinkOracleImpl.sol#L170
https://github.com/redstone-finance/redstone-oracles-monorepo/blob/4df732edefca4d8b72d1140546ac1ee818147053/packages/on-chain-relayer/contracts/custom-integrations/fluid/EthUsdcRedstoneAdapterForFluidOracle.sol#L30
https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-code

33

MEDIUM-15 DoS of uniV3OracleImpl Acknowledged

Description

In uniV3OracleImpl, the current price is compared to TWAPs with different periods. Each TWAP has its own delta percent.

The closer the TWAP edge is to the current price, the smaller the delta. It is checked in function _checkTWAPDelta():

...

maxDelta_ = (price_ * maxDelta_) / OracleUtils.HUNDRED_PERCENT_DELTA_SCALER;

if (exchangeRate_ > (price_ + maxDelta_) || exchangeRate_ < (price_ - maxDelta_)) {

 // Uniswap last price is NOT within the delta

 revert FluidOracleError(ErrorTypes.UniV3Oracle__InvalidPrice);

}

...

The current price is calculated based on the last saved tickCumulative value in observations. The attacker couldn't

manipulate the price to be changed in oracle, because it would revert due to comparisons with old TWAPs, but he could DOS

oracle with these reverts. He can change the tick's value in every block by the minimal delta value. Direction of price change

is not important for the attack, but malicious actor can buy token0 in one block, and then sell it in another to mitigate losses

from arbitrage.

Recommendation

It is recommended not to use the current price in a pool as exchangeRate_, instead use TWAP with a longer period and

compare its value with other TWAPs, being accurate with oracle checkpoints, deltas, and collateral factor. Also try - catch

block returning 0 can be used instead of revert and processed in oracles.

Client's comments

Using a longer TWAP for the current price can be done through the config passed in with the constructor, so no code

changes are needed (current price = first TWAP interval price). However, we are not sure if using a longer TWAP as

current price is the best solution here. The attack of delaying liquidation without reaching bad debt by selling token0 in

one block and buying token1 in the next would be a "just having fun" attack, but even that does not come cheap.

With such a long TWAP window we would not be able to cause sudden dumps, causing liquidations to be lagging,

potentially causing bad debt. For example, if the price falls by 5 or 10% in the last 30 min, the TWAP will stop working

considering it as manipulation but that's an actual price decrease.

UniV3 oracle will be checked against an Oracle like Chainlink or Redstone.

INFORMATIONAL-01 Proxy redundant functional Fixed at df1907

Description

The receive function in the proxy contract contains a redundant functional in case of msg.sig > 0. This check is intended to

differentiate between empty and non-empty calldata. However, in EVM, the receive function is used for plain Ether transfers,

which inherently have empty calldata. This means msg.sig in the context of receive will always be zero.

Recommendation

We recommend removing redundant functional for gas saving in deployment and in plain transfers.

https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L199
https://github.com/Instadapp/fluid-contracts/commit/df1907e1dcad419824cbe904f7d98fa392094fb1
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L233
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L233
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L233

34

INFORMATIONAL-02 Optimization of unstructured storage Fixed at c69413

Description

The current method of interacting with the arbitrary storage slots via structures is more gas consuming than the assembly

sload & sstore.

E.g.:

_getAddressSlot

_getSigsSlot

storage read via structure in _getGovernanceAddr

Recommendation

We recommend using the same implementation as Lido's UnstructuredStorage (used in StorageRead library), which

consumes less gas on both load and store.

INFORMATIONAL-03 Redundant memory variable Fixed at 4f16d3

Description

In the GovernanceModule contract's functions updateAuths & updateGuardians, memory variable setStatus_ is created

only to be used once immediately after declaration.

Recommendation

We recommend removing redundant variables to consume less gas.

INFORMATIONAL-04 Non-optimal if condition Fixed at 14219e

Description

In the _operate, during the supply/borrow ratio calculations the first ifs can be optimized by replacing two checks (both uint)

with check of the already calculated sum.

Also, the if body sets to 0 the same variable that condition checked to be 0.

temp_ = InterestFree + temp3_;

- if (temp3_ == 0 && InterestFree == 0) {

+ if (temp_ == 0) {

 temp3_ = 0;

}

Recommendation

We recommend optimizing conditions.

https://github.com/Instadapp/fluid-contracts/commit/c694139fce9fae3ace6f56007d4ed379ea534755
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L46
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L46
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L46
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L53C14-L53C26
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L53C14-L53C26
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/infiniteProxy/proxy.sol#L53C14-L53C26
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/helpers.sol#L39C14-L39C32
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/helpers.sol#L39C14-L39C32
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/helpers.sol#L39C14-L39C32
https://github.com/lidofinance/lido-dao/blob/master/contracts/0.8.9/lib/UnstructuredStorage.sol
https://github.com/lidofinance/lido-dao/blob/master/contracts/0.8.9/lib/UnstructuredStorage.sol
https://github.com/lidofinance/lido-dao/blob/master/contracts/0.8.9/lib/UnstructuredStorage.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/storageRead.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/storageRead.sol
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/storageRead.sol
https://github.com/Instadapp/fluid-contracts/commit/4f16d3630751643c7e10b8269430faacf3ff4e5c
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L35
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L35
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L35
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L55
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L55
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L55
https://github.com/Instadapp/fluid-contracts/commit/14219e9b1e2b530960d3c36f2f7de8d2c3e35d72
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L355
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L355
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L355
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L372
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L372
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L372

35

INFORMATIONAL-05 Incorrect set of WithdrawalLimit Fixed at 8f5b4c

Description

In function calcWithdrawalLimitBeforeOperate() WithdrawalLimit is calculated. There is inconsistency between calculations,

docs and comments in code. Based on docs and comments expandPercent is maximum number of tokens that can be

withdrawn when full expandDuration is passed. So withdraw amount increases linearly over the expandDuration period. At

Line 194 currentWithdrawalLimit_ is calculated based on lastWithdrawalLimit_ and expandedWithdrawableAmount_.

Consider a case:

user_supply = 6_000_000

expandPercent = 1000 // 10%

expandDuration = 200 // 200 seconds

// First we deposit

newWithdrawalLimit_ = 0 // it is 0 because it is a first user interaction

user_supply = 6_000_000

// calcWithdrawalLimitAfterOperate()

newWithdrawalLimit_ = user_supply - ((user_supply * expandPercent) / 10_000) = 5_400_000;

// Then we withdraw after 100 seconds

// calcWithdrawalLimitBeforeOperate()

timeElapsed = 100

maxWithdrawableLimit_ = (1000 * user_supply) / 10_000 = 600_000; // <- based on comments this is maximum amount

that we can withdraw

expandedWithdrawableAmount_ = (maxWithdrawableLimit_ * timeElapsed) / expandDuration = 300_000; // <- adjusted

withdrawable amount

currentWithdrawalLimit_ = lastWithdrawalLimit_ > expandedWithdrawableAmount_

 ? lastWithdrawalLimit_ - expandedWithdrawableAmount_

 : 0;

currentWithdrawalLimit_ = 5_400_000 - 300_000 = 5_100_000; // lastWithdrawalLimit_ == 5_400_000

minWithdrawalLimit_ = user_supply - maxWithdrawableLimit_ = 6_000_000 - 600_000 = 5_400_000;

currentWithdrawalLimit_ = 5_400_000 // because minWithdrawalLimit_ > currentWithdrawalLimit_

Based on this case we can withdraw up to 600_000 tokens, but based on docs and comments we should be able to

withdraw only expandedWithdrawableAmount_: 300_000.

Recommendation

It is recommended to resolve inconsistency in docs, comments and calculations or give comments and full flow of

WithdrawalLimit change if it is intended behaviour.

https://github.com/Instadapp/fluid-contracts/commit/8f5b4ce0beb78f9bd45b1b30b5ba756189146d1f
https://github.com/statemindio/audit-clones/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L159C14-L159C46
https://github.com/statemindio/audit-clones/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L194

36

INFORMATIONAL-06 Unused BigMath functions Fixed at 2e3a95

Description

Functions fromBigNumber, fromBigNumber, mulDivNormal, decompileBigNumber, mulDivBigNumber, mulBigNumber,

divBigNumber are not used in code.

Recommendation

We recommend considering removing these functions if they will stay unused.

INFORMATIONAL-07 Little gas optimizations Fixed at 6d3315

Description

1.Change from i++ to unchecked{++i}:

adminModule/main.sol#L40

adminModule/main.sol#L60

adminModule/main.sol#L303

adminModule/main.sol#L335

adminModule/main.sol#L406

adminModule/main.sol#L430

adminModule/main.sol#L621

adminModule/main.sol#L846

adminModule/main.sol#L864

adminModule/main.sol#L897

adminModule/main.sol#L918

adminModule/main.sol#L970

adminModule/main.sol#L988

Recommendation

We recommend considering improving this gas optimizations.

https://github.com/Instadapp/fluid-contracts/commit/2e3a95ff4406fd41032b06b07085c3187e2e84e5
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L183
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L183
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L183
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L190
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L190
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L190
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L210
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L210
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L210
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L240
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L240
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L240
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L303
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L303
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L303
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L344
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L344
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L344
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L420
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L420
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/bigMath.sol#L420
https://github.com/Instadapp/fluid-contracts/commit/6d3315272efa540463eda14cba8031e41dcb00ba
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L40
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L60
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L303
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L335
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L406
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L430
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L621
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L846
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L864
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L897
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L918
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L970
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L988

37

INFORMATIONAL-08 Storage update of exchange prices Acknowledged

Description

Based on Line 439 storage update of exchange prices occurs only when changes of utilization/supply/borrow ratio hit the

threshold because this triggers recalculation of borrow rate. But even if borrow rate doesn't change, it should be

accumulated. In long term linear part of borrowExchangePrice_increase would underestimate interests. Ideally,

exchange prices should be updated every second, but in fact minimal period is one block - 12 seconds.

Recommendation

It is recommended to update exchange prices and last update timestamp with every call of operate() function.

Client's comments

We expect the frequency of updates to be often enough so that the difference in the compounding effect is acceptable.

As you point out, on-chain the compounding is always an imperfection. We can adjust the update storage threshold +

we can run a bot that triggers updateExchangePrices() if e.g. after xyz of time no storage update has happened.

The difference for 1 year at 10% rate would be:

updated every block (12 seconds): (1+0.1/(365*24*60*6))**(365*24*60*6) = 1.105170916043204

updated once a day: (1+0.1/(365))**(365) = 1.1051557816162325

updated 6 times a day: (1+0.1/(365*6))**(365*6) = 1.1051683949338504

The difference between updating every block and 6 times a day is 0.002391537616559%

INFORMATIONAL-09 Double calculations Acknowledged

Description

At Lines 474 - 477 there is check for skipping transfers, but these calculations are already done at Lines 583 - 586 and

operateAmountIn_ is passed to internal function.

Recommendation

It is recommended to save the value of operateAmountIn_ in internal _operate() function to use it in further condition and to

avoid double calculations.

Client's comments

This is true but the _operate() method is at the limit of the stack and adding any variable that would store the result

causes a Stack too deep error. We would have to introduce a struct, which ends up making things more expensive. So

we had to go with double calculating for the special case rather than making the cost overall bigger for all causes.

Please let us know if you have an idea about how this could be done without a struct. The problem is this is also a value

that must be stored from the beginning of the method to almost the end, so a temporary var would also be blocked for

most of the method...

https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L439
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L474
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L583
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L183

38

INFORMATIONAL-10 Potential Misconfiguration of RateData Fixed at 615136

Description

It is possible to set k1 == k2 which bypasses the guard condition. In this case, every call of calcRateV2, where

utilization < kink2, will result in a revert due to a zero division error.

 if (utilization_ < kink1_) {

 ...

 x1_ = 0; // 0%

 x2_ = kink1_;

 } else if (utilization_ < kink2_) {

 ...

 x1_ = kink1_;

 x2_ = kink2_;

 } else {

 ...

 x1_ = kink2_;

 x2_ = FOUR_DECIMALS;

 }

 uint256 slope_ = ((y2_ - y1_) * TWELVE_DECIMALS) / (x2_ - x1_); // zero division

Also, revert will happen if kink1 = 0 or kink2 = FOUR_DECIMALS.

Same issue applies for the calcRateV1.

Recommendation

We recommend changing guard condition to

if (

 rataDataV2Params_.kink1 >= rataDataV2Params_.kink2 ||

 ...

)

and adding sanity checks for the boundary values of the kink variables.

INFORMATIONAL-11 Typos in comments Fixed at 2403f1

Description

In the comment there is probably a mistake. The comment should be: outpaces withdrawals.

In the comment there is probably a mistake. The formula in code: supply_increase = borrow_increase * (1 - fee).

Recommendation

We recommend fixing these typos.

https://github.com/Instadapp/fluid-contracts/commit/6151369d42d9bb9183c938186b3c4c1d082c404f
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L143
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L421
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L373
https://github.com/Instadapp/fluid-contracts/commit/2403f175be86bde288dfab674219089719dfa9d6
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L237
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L123

39

INFORMATIONAL-12 Possible DOS with rate manipulation Fixed at 4e3423

Description

In function calcBorrowRateFromUtilization() there is a check to limit calculated rate, which reverts execution in case of

exceeding the value X16 = 65535. Utilization can be manipulated and can be more than 100%. E.g. if protocol has high

borrow limit, it can borrow, then transfer tokens on liquidity contract and borrow again and repeat this cycle to manipulate

the utilization. So there is a possibility for rate to exceed 65535 value and in that case main functionality of liquidity module

will be blocked. Governance should update rate data to mitigate such effect.

Recommendation

It is recommended to use maximun allowed value - 65535 to not exceed 16 bit and emit event indicating needed changes in

rates model instead of reverting execution in case of exceeding rate limit.

INFORMATIONAL-13 Using same slot for proxy admin and governance Acknowledged

Description

In infiniteProxy and in adminModule implementation same slot is used for proxy admin and governance. It is better to

separate this roles because they have logically different functions.

Recommendation

It is recommended to have two different slots for proxy admin address and governance address.

Client's comments

Acknowledged but keeping things simple as both roles are expected to be held by the same Governance for the

foreseeable future. If it changes, we can update Liquidity logic accordingly.

INFORMATIONAL-14 Zero address check for _revenueCollector Fixed at 567875

Description

In adminModule there is no initialization function, so at the beginning _revenueCollector will be zero address. Function

collectRevenue() is open and can be called by anyone, so if _revenueCollector is not set, protocol profit could be lost.

Recommendation

It is recommended to add check for zero address of _revenueCollector in collectRevenue() function.

...

if (revenueAmount_ > 0 && _revenueCollector != address(0)) {

 ...

}

...

https://github.com/Instadapp/fluid-contracts/commit/4e3423b412757fed04aeb24b33c8007f9437593d
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/libraries/liquidityCalcs.sol#L349
https://github.com/Instadapp/fluid-contracts/commit/5678752f0c9fbe698ff9d3288a54a5aab41a513f
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L949

40

INFORMATIONAL-15 Redundant function and storage value overwriting Fixed at e8e9cd

Description

The _updateExchangePrices internal function updates exchange prices and saves them into the packed

_exchangePricesAndConfig structure. During the storage update, it uses the mask

0xfffffffe00ffffffffffffffff which does not remove the first 6 bits of

the last update timestamp (ffffffffffffffff is 64 bits while the timestamp starts at 58) and also nullifies the supply ratio flag

and first 5 bits of the supplyRatio value.

Those inconsistencies do not affect the protocol performance as the _updateExchangePrices is always followed by the

storage update of affected values.

On the other hand, the _updateExchangePrices is redundant as in every instance of its invocation storage save is not

required and/or followed by LiquidityCalcs.calcTokenData which returns the same calculated value.

Recommendation

We recommend removing the _updateExchangePrices function or fixing the mask to the correct value.

INFORMATIONAL-16 Checking callbackData_ length Fixed at 8160ba

Description

In function _isInOutBalancedOut() callbackData_ is passed and then inFrom_ address is extracted from it. But there is no

check that length of bytes array is at least 20 bytes. This could lead underflow during sub operation and could lead to

unexpected behavior.

Recommendation

It is recommended to add check for callbackData_ length.

INFORMATIONAL-17 Auth role potential impact Acknowledged

Description

The auth role has the ability to withdraw all liquidity without any restrictions. There are no set limits for baseDebtCeiling or

maxDebtCeiling, and the auth role has the capability to add an unlimited number of borrowers. This design creates a

significant risk, as it enables the auth role to potentially withdraw all funds in a single transaction.

Recommendation

It is recommended to implement constraints on both baseDebtCeiling and maxDebtCeiling to establish maximum limits on

the amount that can be withdrawn at any given time. Additionally, consider implementing a quote on the number of

borrowers that the one with auth role can add.

Client's comments

Auth is indeed a powerful role but note that Auth will be governance via different contracts. So basically in the future if

we want to automate some parts, for example, DAI rates should depend on DSR, then we create an auth module that

can update DAI rates by fetching real-time DSR value. There can be many more instances just giving 1 example here.

Auth will not simply be a multisig or any random thing. It'll still be entirely controlled by governance.

https://github.com/Instadapp/fluid-contracts/commit/e8e9cdc447d382d879fd71da6dfd1341f8d758c9
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L163
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L163
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L163
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/common/variables.sol#L82
https://github.com/Instadapp/fluid-contracts/commit/8160bacef5c42136872f4be456e28fe82e54ebdf
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/userModule/main.sol#L553
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/liquidity/adminModule/main.sol#L269

41

INFORMATIONAL-18 Additional checks for Liquidity's token configs Acknowledged

Description

At Lines 167 - 170 asset is checked if it is configured in Liquidity. But this check is insufficient because once token is added

to Liquidity its config will be always not null.

Recommendation

It is recommended to add further check if depoyed address of iToken is already added in Liquidity in _userSupplyData

mapping and add possibility in Liquidity to stop or to nullify value in _exchangePricesAndConfig.

Client's comments

Adding the possibility to nullify _exchangePricesAndConfig is very powerful and would only be an option if

totalAmounts for that token are 0. We do not expect this case to happen, and if it eventually happens we could upgrade

Liquidity to accommodate this need. More importantly, we don't really see an issue here. This check was thought of

when createToken() was an open public method to avoid people creating iTokens for unlisted tokens (at Liquidity) but

createToken() is auth-protected now, and the flow for listing new tokens will always be (as per docs.md):

-process to list a token at Liquidity is: 1. Set rate config for token 2. Set token config 3. allow any user. If done in any

other way, an error is thrown.

-process to create a new Lending iToken is: 1. set up config for underlying asset at Liqudity 2. deploy iToken via

LendingFactory createToken() 3. configure user supply config at Liquidity.

INFORMATIONAL-19 Redundant check Fixed at 7ba5c8

Description

At Line 66 rewardsRateModel_ is checked for zero address, but previously there is a check for _rewardsActive. If

rewardsActive is True, then rewardsRateModel will be always set.

Recommendation

It is recommended to remove redundant check.

INFORMATIONAL-20 Sanity check for uint to int conversion Fixed at 157ab0

Description

In function _depositToLiquidity() and _withdrawFromLiquidity() variable uint256 assets_ is converted to int256. When value

of assets_ is bigger than 2**256 - 1, this will cause overflow during conversion, so int256 variable will be negative. This may

cause unexpected actions on Liquidity layer. Deposit in Lending could actually trigger withdraw from Lending and vice versa

during withdraw on Lending.

Recommendation

It is recommended to add sanity check if converted int256 value is positive or negative, during deposits or withdrawals.

https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L167
https://github.com/Instadapp/fluid-contracts/commit/7ba5c8be7722129121639f545baf3d78121820dc
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L66
https://github.com/Instadapp/fluid-contracts/commit/157ab08cd547bf703a1d41eb8d46ce17e33a82df
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L148
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L175

42

INFORMATIONAL-21 Code duplicate Fixed at 1d21cc

Description

In function getLiquidityBalance() supplyExchangePrice_ is calculated, but there is already a special function to get it from

Liqiuidity - getLiquidityExchangePrice().

Recommendation

It is recommended to use getLiquidityExchangePrice() function to get supplyExchangePrice_ to avoid code duplication.

INFORMATIONAL-22 Wrong slot numbers in comments Fixed at 346fe6

Description

In iToken Variables contract variables' slot numbers are indicated in comments. In ERC20Permit section there is only one

variable - _nonces. But in OZ library in version 4.8.2 ERC20Permit contract from draft-ERC20Permit.sol has two variables -

mapping _nonces and bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT. So slot 6 is occupied by that variable

and further variables have wrong slot numbers in comments.

Recommendation

It is recommended to adjust right slot numbers in comments based on all dependencies and parent contracts.

INFORMATIONAL-23 Unused imports Fixed at 00024c

Description

The imported files are not used:

1. IERC20Permit & BigMath in lending/iToken/main.sol;

2. Structs in lending/lendingFactory.sol;

3. ErrorTypes in vaultT1/vault/core/helpers.sol

Recommendation

We recommend removing unused imports.

INFORMATIONAL-24 Redundant input variable Fixed at b569fb

Description

In the methods designed to use underlying tokens, the input variable uint256 assets_ is used to pass the amount of tokens.

The input is redundant as msg.value is uint256 and can be used by itself.

1. If removed from the _executeDepositETH, the msg.value < assets_ check must be moved to the mintETH function to

execute check on previewMint result. That way the depositETH function's input variable uint256 assets_ can be lifted.

2. In fundRewardsETH the input variable can be removed.

Recommendation

We recommend removing redundant variables.

https://github.com/Instadapp/fluid-contracts/commit/1d21ccbc917a0bfe6c303e55c0706ffb284a3b01
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L270
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L259
https://github.com/Instadapp/fluid-contracts/commit/346fe67e8abd84ce256a4225aa1d0034c8e03e89
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/variables.sol#L82
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/variables.sol#L82
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/variables.sol#L82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/extensions/draft-ERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/extensions/draft-ERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/extensions/draft-ERC20Permit.sol
https://github.com/Instadapp/fluid-contracts/commit/00024c9b29009cfcfa9d6343bf81c841c8db1077
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L15
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L15
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/main.sol#L15
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L14
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L14
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L14
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/vaultT1/vault/core/helpers.sol#L12C12-L12C12
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/vaultT1/vault/core/helpers.sol#L12C12-L12C12
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/vaultT1/vault/core/helpers.sol#L12C12-L12C12
https://github.com/Instadapp/fluid-contracts/commit/b569fb6aeea8c354f9184a2b625a896afc988773
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L103
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L103
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L103
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L211
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L211
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L211
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L195
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L195
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L195
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L49
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L49
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/iToken/types/iTokenNativeUnderlying.sol#L49

43

INFORMATIONAL-25 Redundant type conversion Fixed at f40cfc

Description

The CREATE3.deploy() returns address, but converted to address in createToken invocation.

Recommendation

We recommend removing redundant type conversion.

INFORMATIONAL-26 Memory to calldata gas optimization Fixed at d18590

Description

The calldata location is cheaper to use than memory.

1. In vaultT1(address supplyToken_, address borrowToken_) the inputs are saved into the memory structure, which is

used in the ternary condition.

constants_.supplyToken = supplyToken_;

constants_.supplyDecimals = constants_.supplyToken != NATIVE_TOKEN ? IERC20(supplyToken_).decimals() : 18;

constants_.borrowToken = borrowToken_;

constants_.borrowDecimals = constants_.borrowToken != NATIVE_TOKEN ? IERC20(borrowToken_).decimals() : 18;

Recommendation

We recommend using calldata whenever possible to preserve gas.

INFORMATIONAL-27 Redundant variable in scope Fixed at 0f4048

Description

In the _addDebtToTickWrite, the tickExistingRawDebt_ is defined above the if scope but used only in one branch. It will

consume gas to initialize and read data even if it's unnecessary.

Recommendation

We recommend moving tickExistingRawDebt_ to its appropriate scope.

INFORMATIONAL-28 Code duplication Acknowledged

Description

The mapId calculation for the TickHasDebt structure can be implemented as an internal function, which will improve code

readability and most likely decrease contract code size.

Recommendation

We recommend introducing an internal mapId calculation function.

Client's comments

Vault code / Fluid in general puts high importance on any gas cost savings, so because contract code size is still below

max limit we prefer having slight code duplication in exchange for even tiny gas savings. This applies also to some

other parts of duplicated code in Vault protocol (or Liquidity for that matter) e.g. fetching Oracle price etc.

https://github.com/Instadapp/fluid-contracts/commit/f40cfc28ec51d5ad22576ed141f76919a109dac9
https://github.com/transmissions11/solmate/blob/fadb2e2778adbf01c80275bfb99e5c14969d964b/src/utils/CREATE3.sol#L41
https://github.com/transmissions11/solmate/blob/fadb2e2778adbf01c80275bfb99e5c14969d964b/src/utils/CREATE3.sol#L41
https://github.com/transmissions11/solmate/blob/fadb2e2778adbf01c80275bfb99e5c14969d964b/src/utils/CREATE3.sol#L41
https://github.com/transmissions11/solmate/blob/fadb2e2778adbf01c80275bfb99e5c14969d964b/src/utils/CREATE3.sol#L41
https://github.com/transmissions11/solmate/blob/fadb2e2778adbf01c80275bfb99e5c14969d964b/src/utils/CREATE3.sol#L41
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L173
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L173
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L173
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L173
https://github.com/Instadapp/fluid-contracts/blob/f124139c45afed8d56aba2e2115c631a7bc98c75/contracts/protocols/lending/lendingFactory.sol#L173
https://github.com/Instadapp/fluid-contracts/commit/d185909043a2a60db43c2b43a1a8b91d6be6231b
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/deploymentLogics/vaultT1Logic.sol#L95
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/deploymentLogics/vaultT1Logic.sol#L95
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/deploymentLogics/vaultT1Logic.sol#L95
https://github.com/Instadapp/fluid-contracts/commit/0f4048a9d6731b2206579bd78019ac3f2e461a95
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L318
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L318
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L318
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L336
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L336
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/helpers.sol#L336

44

INFORMATIONAL-29 Incorrect BigMath sizes in comments Fixed at 449eba

Description

In the description of the variables, a handful of comments say debt factor (27 bits precision & 13 bits expansion), which

contradicts its size, the other comment Debt factor = 50 bits (35 bits coefficient | 15 bits expansion), and BigMathVault

library constant values (COEFFICIENT_SIZE_DEBT_FACTOR = 35 & EXPONENT_SIZE_DEBT_FACTOR = 15).

Recommendation

We recommend resolving contradictions.

INFORMATIONAL-30 Double calculation of vault_ address Acknowledged

Description

In function vaultT1() address vault_ is calculated to be further used in _calculateLiquidityVaultSlots(). But this address was

already calculated in function deployVault() at Line 246

Recommendation

It is recommended to avoid double calculations.

Client's comments

The calculated vault address would have to be passed in from off-chain and then in deployment scripts. Even more

could be passed in from off-chain actually. But the cost here should not be too much as VaultFactory will already be a

warm address plus more importantly gas optimization for vault deployment does not matter as much.

INFORMATIONAL-31 Unnecessary cast to payable address Fixed at 5265fc

Description

At Line 232 address(this) is casted to payable to get contract's balance and to transfer it to LIQUIDITY.

Recommendation

It is recommended to remove cast to payable, because it is redundant to get contract's balance.

https://github.com/Instadapp/fluid-contracts/commit/449eba4d5a11ca47a56e22a4dbf541af72badbc6
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/common/variables.sol#L107
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/common/variables.sol#L107
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/common/variables.sol#L107
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/libraries/bigMathVault.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/libraries/bigMathVault.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/libraries/bigMathVault.sol#L9
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/deploymentLogics/vaultT1Logic.sol#L95
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/main.sol#L232
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/factory/main.sol#L246
https://github.com/Instadapp/fluid-contracts/commit/5265fc30ad4b4ab30ec58bf4535e73fb41756165
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/adminModule/main.sol#L232

45

INFORMATIONAL-32 Unrestricted maxLTV in StETHQueue Fixed at f5f69e

Description

The StETHQueue contract does not implement an upper limit on the maxLTV ratio, other than preventing it from being zero.

function setMaxLTV(uint16 maxLTV_) external onlyAuths {

 if (maxLTV_ == 0) { // <-- only check for zero

 revert StETHQueueError(ErrorTypes.StETH__MaxLTVZero);

 }

 maxLTV = maxLTV_;

 emit LogSetMaxLTV(maxLTV_);

}

If maxLTV is set to a value higher than HUNDRED_PERCENT, it allows users to borrow an amount of ETH that exceeds the

value of their stETH collateral. This scenario opens up an arbitrage opportunity, potentially enabling users to drain ETH up to

borrow limit from the Liquidity contract.

Recommendation

It is recommended to implement a cap on the maxLTV value to ensure it does not exceed HUNDRED_PERCENT.

INFORMATIONAL-33 Optimization of rate calculation Fixed at a739e4

Description

In function _getChainlinkExchangeRate() final rate is calculated based on three hops. Conditions, like one at Lines 132 - 134,

check if next hop exists. However further calculations are unnecessary if the rate is zero after one of these steps.

Recommendation

It is recommended to consider adding a check for zero rate and not to continue calculations for the next hops.

INFORMATIONAL-34 Strict sanity check of TWAP periods Fixed at 4ad772

Description

Condition at Lines 81 - 88 checks for ascending order of seconds ago values. But comparisons are not strict and they allow

to have the same values. This may lead to incorrect calculation of TWAP intervals and division by zero.

Recommendation

It is recommended to make more strict comparisons and not to allow the same value of seconds ago.

https://github.com/Instadapp/fluid-contracts/commit/f5f69e9987baa3611ba3447e5a0092e7d048396b
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/steth/main.sol#L111
https://github.com/Instadapp/fluid-contracts/commit/a739e4deb2e533dff9f789c92f9d0981d63dca92
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/chainlinkOracleImpl.sol#L125
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/chainlinkOracleImpl.sol#L132
https://github.com/Instadapp/fluid-contracts/commit/4ad77203e62c0f0e951def820a5542613089f05e
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L81

46

INFORMATIONAL-35 Negative tick culmulative processing Fixed at 93aefa

Description

At Lines 160 - 167 exchangeRate_ is calculated based on mean tick value:

...

int24((tickCumulatives_[_TWAP_DELTAS_LENGTH + 1] - tickCumulatives_[_TWAP_DELTAS_LENGTH]) /

 _UNI_TWAP4_INTERVAL)

...

This value can be negative. In that case it should be further processed due to rounding errors as in Uniswap V3

OracleLibrary.sol.

Same issue is in function _checkTWAPDelta() at Line 207

Recommendation

It is recommended to proccess negative value of mean tick:

...

int56 tickCumulativesDelta = tickCumulatives_[_TWAP_DELTAS_LENGTH + 1] -

tickCumulatives_[_TWAP_DELTAS_LENGTH];

int24 arithmeticMeanTick = int24(tickCumulativesDelta/_UNI_TWAP4_INTERVAL);

if (tickCumulativesDelta < 0 && (tickCumulativesDelta % _UNI_TWAP4_INTERVAL != 0)) arithmeticMeanTick--;

...

INFORMATIONAL-36 Revert with equal deltas Fixed at a6875f

Description

The uniV3OracleImpl.sol constructor has sanity check that deltas are less than 100% and decreasing. The following

comment is attached to this: all following deltas must be <= than the previous one. But in the if-else construction,

inequalities are not strict.

This leads to incorrect if-else logic with equal deltas and the constructor will revert.

Recommendation

We recommend changing the type of inequalities to strict ones.

https://github.com/Instadapp/fluid-contracts/commit/93aefa2268dba812c94f52ece82ae4bc62d9f150
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L160
https://github.com/Uniswap/v3-periphery/blob/697c2474757ea89fec12a4e6db16a574fe259610/contracts/libraries/OracleLibrary.sol#L36
https://github.com/Uniswap/v3-periphery/blob/697c2474757ea89fec12a4e6db16a574fe259610/contracts/libraries/OracleLibrary.sol#L36
https://github.com/Uniswap/v3-periphery/blob/697c2474757ea89fec12a4e6db16a574fe259610/contracts/libraries/OracleLibrary.sol#L36
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L199C14-L199C29
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L207
https://github.com/Instadapp/fluid-contracts/commit/a6875f4f1b61c0456ab5fff07231a6a5e08ac248
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/oracle/implementations/uniV3OracleImpl.sol#L89

47

INFORMATIONAL-37 Incorrect logic of to_ in operate method of Vault Fixed at 3c57b0

Description

In the operate method a user can provide to_ = 0 here and as stated it will be changed to msg.sender. However to_ is

provided as is to the Liquidity Layer(link). In case of to_ = 0 it leads to revert.

Recommendation

We recommend setting to_ = msg.sender if to_ equals to 0.

INFORMATIONAL-38 User can bypass the check in flashLoanMultiple Fixed at 661f9a

Description

A user can call flashLoanMultiple with tokensWithAmounts_ containing the same token twice, for example, user can bypass

the check with [NATIVE_TOKEN, maxFlashLoan()], [NATIVE_TOKEN, maxFlashLoan()], it will cause the revert in the liquidity

layer.

Recommendation

We recommend making correct revert in this case.

INFORMATIONAL-

39

maxFlashLoan calculates an incorrect amount due to lack of subtracting of

userBorrow_ from borrow limit.

Fixed at

11047a

Description

As maxFlashLoan returns total amount protocol borrow can reach (not borrowable amount in current operation), it does not

change the limit through tokensWithAmounts_ iteration in flashLoanMultiple.

Recommendation

We recommend changing maxFlashLoan function.

 function maxFlashLoan(address token_) public view returns (uint256) {

 uint256 userBorrowData_ = _readUserBorrowData(token_);

 uint256 userBorrow_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) &

LiquidityCalcs.X64;

- return LiquidityCalcs.calcBorrowLimitBeforeOperate(userBorrowData_, userBorrow_);

+ return LiquidityCalcs.calcBorrowLimitBeforeOperate(userBorrowData_, userBorrow_) - userBorrow_;

 }

INFORMATIONAL-40 Unused library function Fixed at 3ee823

Description

Function toBigNumber is not used in any part of protocol contracts.

Recommendation

We recommend removing this function from the library code.

https://github.com/Instadapp/fluid-contracts/commit/3c57b07dba682c5cedf448d2a28fcae15d5d0d76
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L28
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L32C17-L32C20
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L32C17-L32C20
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/vault/vaultT1/coreModule/main.sol#L407
https://github.com/Instadapp/fluid-contracts/commit/661f9a0522287f5f5de09feb25e09f51edf2cf65
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/flashloan/main.sol#L101
https://github.com/Instadapp/fluid-contracts/commit/11047ad92663a22a9b085824b3ae421f7fe99d4b
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/flashloan/main.sol#L40
https://github.com/Instadapp/fluid-contracts/blob/9c49c3df3b05f9ad7f313e5876a641551604dc7c/contracts/protocols/flashloan/main.sol#L101
https://github.com/Instadapp/fluid-contracts/commit/3ee823ddcd152235c9a0dcdadd4940ecd0784938
https://github.com/Instadapp/fluid-contracts/blob/ec93bf3592b3086b188162dfee338df29ac4d0a8/contracts/libraries/bigMathMinified.sol#L33
https://github.com/Instadapp/fluid-contracts/blob/ec93bf3592b3086b188162dfee338df29ac4d0a8/contracts/libraries/bigMathMinified.sol#L33
https://github.com/Instadapp/fluid-contracts/blob/ec93bf3592b3086b188162dfee338df29ac4d0a8/contracts/libraries/bigMathMinified.sol#L33

0

